Skip to main content

Advertisement

Log in

Enhancement of chondrocyte autophagy is an early response in the degenerative cartilage of the temporomandibular joint to biomechanical dental stimulation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Autophagy is a cell protective mechanism for maintaining cellular homeostasis. The present study aimed to investigate whether autophagy is enhanced in the biomechanically induced degenerative cartilage of the temporomandibular joint (TMJ) and the potential role of mitogen-activated protein kinase kinase kinase kinase 3 (MAP4K3) and mammalian Target of rapamycin (mTOR) in this observation. To induce degenerative changes in the TMJs, rats were subjected to biomechanical dental stimulation by moving 4 molars away from their original position as we previously reported. The ultrastructure of autophagosome was observed by transmission electron microscopy. The number of lysosomes was analyzed by flow cytometry. The expression levels of Beclin1 and LC3 and the involvement of MAP4K3 activity were detected by immunohistochemistry, real-time PCR and western blot. The activity of the mTOR pathway indicated by p-mTOR and p-p70S6 K was assayed by western blot. TMJ degeneration, characterized by irregular cell arrangement and cell-free area, was induced in the experimental groups. Under transmission electron microscopy, we observed the presence of autophagosomes, small patches of condensed chromatin, abundant rough endoplasmic reticulum and Golgi apparatus. The number of lysosomes and the expression levels of Beclin1 and LC3 increased, while the activity of mTOR and the expression level of MAP4K3 decreased in the experimental groups. Cartilage in TMJ which was induced to be degenerative biomechanically exhibited autophagy accompanied by reduced mTOR and MAP4K3 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

LC3:

Light chain 3

mTOR:

Mammalian target of rapamycin

OA:

Osteoarthritis

ROS:

Reactive oxygen species

TMJ:

Temporomandibular joint

TMD:

Temporomandibular disorders

ULK:

Uncoordinated-51 like kinase

MAP4K3:

Mitogen-activated protein kinase kinase kinase kinase 3

References

  1. Martinez-Borra J, Lopez-Larrea C (2012) Autophagy and self-defense. Adv Exp Med Biol 738:169–184

    Article  PubMed  CAS  Google Scholar 

  2. Ohsumi Y (1999) Molecular mechanism of autophagy in yeast, Saccharomyces cerevisiae. Philos Trans R Soc Lond B Biol Sci 354: 1577–1580; discussion 1580-1581

    Google Scholar 

  3. Arsov I, Adebayo A, Kucerova-Levisohn M, Haye J, MacNeil M, Papavasiliou FN et al (2011) A role for autophagic protein beclin 1 early in lymphocyte development. J Immunol 186:2201–2209

    Article  PubMed  CAS  Google Scholar 

  4. Iovino S, Oriente F, Botta G, Cabaro S, Iovane V, Paciello O et al (2012) PED/PEA-15 induces autophagy and mediates TGF-beta1 effect on muscle cell differentiation. Cell Death Differ 19:1127–1138

    Article  PubMed  CAS  Google Scholar 

  5. Cai Z, Yan LJ, Li K, Quazi SH, Zhao B (2012) Roles of AMP-activated protein kinase in Alzheimer’s disease. Neuromol Med 14:1–14

    Article  CAS  Google Scholar 

  6. Chiu HW, Chen YA, Ho SY, Wang YJ (2012) Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and -independent human prostate cancer cells. PLoS ONE 7:e31579

    Article  PubMed  CAS  Google Scholar 

  7. Jin Y, Tanaka A, Choi AM, Ryter SW (2012) Autophagic proteins: new facets of the oxygen paradox. Autophagy 8:426–428

    Article  PubMed  CAS  Google Scholar 

  8. Zheng F, Yang WJ, Sun KJ, Wan XM, Man N, Wen LP (2012) Hoechst 33342-induced autophagy protected HeLa cells from caspase-independent cell death with the participation of ROS. Free Radic Res 46:740–749

    Article  PubMed  CAS  Google Scholar 

  9. Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13:1–9

    Article  PubMed  CAS  Google Scholar 

  10. Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36:2445–2462

    Article  PubMed  CAS  Google Scholar 

  11. Kimura S, Noda T, Yoshimori T (2008) Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33:109–122

    Article  PubMed  CAS  Google Scholar 

  12. Yu C, Wang L, Lv B, Lu Y, Zeng L, Chen Y et al (2008) TMEM74, a lysosome and autophagosome protein, regulates autophagy. Biochem Biophys Res Commun 369:622–629

    Article  PubMed  CAS  Google Scholar 

  13. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  14. Furuya N, Yu J, Byfield M, Pattingre S, Levine B (2005) The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1:46–52

    Article  PubMed  CAS  Google Scholar 

  15. Ohsumi Y, Mizushima N (2004) Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol 15:231–236

    Article  PubMed  CAS  Google Scholar 

  16. Li X, He L, Che KH, Funderburk SF, Pan L, Pan N et al (2012) Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat Commun 3:662

    Article  PubMed  Google Scholar 

  17. Shpilka T, Weidberg H, Pietrokovski S, Elazar Z (2011) Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 12:226

    Article  PubMed  CAS  Google Scholar 

  18. Menzies FM, Moreau K, Puri C, Renna M, Rubinsztein DC (2012) Measurement of autophagic activity in mammalian cells. Curr Protoc Cell Biol Chapter 15:Unit 15.16

  19. Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M (2010) Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthr Rheum 62:791–801

    Article  CAS  Google Scholar 

  20. Bohensky J, Leshinsky S, Srinivas V, Shapiro IM (2010) Chondrocyte autophagy is stimulated by HIF-1 dependent AMPK activation and mTOR suppression. Pediatr Nephrol 25:633–642

    Article  PubMed  Google Scholar 

  21. Bohensky J, Terkhorn SP, Freeman TA, Adams CS, Garcia JA, Shapiro IM et al (2009) Regulation of autophagy in human and murine cartilage: hypoxia-inducible factor 2 suppresses chondrocyte autophagy. Arthr Rheum 60:1406–1415

    Article  Google Scholar 

  22. Diener K, Wang XS, Chen C, Meyer CF, Keesler G, Zukowski M et al (1997) Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proc Natl Acad Sci U S A 94:9687–9692

    Article  PubMed  CAS  Google Scholar 

  23. Lam D, Dickens D, Reid EB, Loh SH, Moisoi N, Martins LM (2009) MAP4K3 modulates cell death via the post-transcriptional regulation of BH3-only proteins. Proc Natl Acad Sci U S A 106:11978–11983

    Article  PubMed  CAS  Google Scholar 

  24. Findlay GM, Yan L, Procter J, Mieulet V, Lamb RF (2007) A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J 403:13–20

    Article  PubMed  CAS  Google Scholar 

  25. Goldring SR, Goldring MB (2006) Clinical aspects, pathology and pathophysiology of osteoarthritis. J Musculoskelet Neuronal Interact 6:376–378

    PubMed  CAS  Google Scholar 

  26. Lahm A, Kasch R, Mrosek E, Spank H, Erggeet C, Esser J et al (2012) Semiquantitative analysis of ECM molecules in the different cartilage layers in early and advanced osteoarthritis of the knee joint. Histol Histopathol 27:609–615

    PubMed  CAS  Google Scholar 

  27. Almonte-Becerril M, Navarro-Garcia F, Gonzalez-Robles A, Vega-Lopez MA, Lavalle C, Kouri JB (2010) Cell death of chondrocytes is a combination between apoptosis and autophagy during the pathogenesis of Osteoarthritis within an experimental model. Apoptosis 15:631–638

    Article  PubMed  CAS  Google Scholar 

  28. Schmitter M, Essig M, Seneadza V, Balke Z, Schroder J, Rammelsberg P (2010) Prevalence of clinical and radiographic signs of osteoarthrosis of the temporomandibular joint in an older persons community. Dentomaxillofac Radiol 39:231–234

    Article  PubMed  CAS  Google Scholar 

  29. Griffin CJ, Powers R, Kruszynski R (1979) The incidence of osteo-arthritis of the temporomandibular joint in various cultures. Aust Dent J 24:94–106

    Article  PubMed  CAS  Google Scholar 

  30. Wang MQ, Xue F, He JJ, Chen JH, Chen CS, Raustia A (2009) Missing posterior teeth and risk of temporomandibular disorders. J Dent Res 88:942–945

    Article  PubMed  CAS  Google Scholar 

  31. Wang GW, Wang MQ, Wang XJ, Yu SB, Liu XD, Jiao K (2010) Changes in the expression of MMP-3, MMP-9, TIMP-1 and aggrecan in the condylar cartilage of rats induced by experimentally created disordered occlusion. Arch Oral Biol 55:887–895

    Article  PubMed  CAS  Google Scholar 

  32. Jiao K, Wang MQ, Niu LN, Dai J, Yu SB, Liu XD et al (2009) Death and proliferation of chondrocytes in the degraded mandibular condylar cartilage of rats induced by experimentally created disordered occlusion. Apoptosis 14:22–30

    Article  PubMed  Google Scholar 

  33. Sun L, Wang M, He J, Liu L, Chen S, Widmalm SE (2009) Experimentally created nonbalanced occlusion effects on the thickness of the temporomandibular joint disc in rats. Angle Orthod 79:51–53

    Article  PubMed  Google Scholar 

  34. Jiao K, Wang MQ, Niu LN, Dai J, Yu SB, Liu XD (2010) Mandibular condylar cartilage response to moving 2 molars in rats. Am J Orthod Dentofacial Orthop 137:460.e1–8; discussion 460-461

  35. Ranstam J (2012) Repeated measurements, bilateral observations and pseudoreplicates, why does it matter? Osteoarthr Cartil 20:473–475

    Article  PubMed  CAS  Google Scholar 

  36. Mizushima N (2009) Physiological functions of autophagy. Curr Top Microbiol Immunol 335:71–84

    Article  PubMed  CAS  Google Scholar 

  37. Warren MP, Fried JL (2001) Temporomandibular disorders and hormones in women. Cells Tissues Organs 169:187–192

    Article  PubMed  CAS  Google Scholar 

  38. Muraki S, Akune T, Oka H, Ishimoto Y, Nagata K, Yoshida M et al (2012) Incidence and risk factors for radiographic knee osteoarthritis and knee pain in Japanese men and women: a longitudinal population-based cohort study. Arthr Rheum 64:1447–1456

    Article  Google Scholar 

  39. Jiao K, Niu LN, Wang MQ, Dai J, Yu SB, Liu XD et al (2011) Subchondral bone loss following orthodontically induced cartilage degradation in the mandibular condyles of rats. Bone 48:362–371

    Article  PubMed  CAS  Google Scholar 

  40. Shen G, Darendeliler MA (2005) The adaptive remodeling of condylar cartilage—a transition from chondrogenesis to osteogenesis. J Dent Res 84:691–699

    Article  PubMed  CAS  Google Scholar 

  41. Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V (2007) HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy 3:207–214

    PubMed  CAS  Google Scholar 

  42. Roach HI, Aigner T, Kouri JB (2004) Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis 9:265–277

    Article  PubMed  CAS  Google Scholar 

  43. Perez HE, Luna MJ, Rojas ML, Kouri JB (2005) Chondroptosis: an immunohistochemical study of apoptosis and Golgi complex in chondrocytes from human osteoarthritic cartilage. Apoptosis 10:1105–1110

    Article  CAS  Google Scholar 

  44. Kouri JB, Lavalle C (2006) Do chondrocytes undergo “activation” and “transdifferentiation” during the pathogenesis of osteoarthritis? A review of the ultrastructural and immunohistochemical evidence. Histol Histopathol 21:793–802

    PubMed  CAS  Google Scholar 

  45. Temple-Wong MM, Bae WC, Chen MQ, Bugbee WD, Amiel D, Coutts RD et al (2009) Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral condyle. Osteoarthr Cartil 17:1469–1476

    Article  PubMed  CAS  Google Scholar 

  46. Saarakkala S, Julkunen P, Kiviranta P, Makitalo J, Jurvelin JS, Korhonen RK (2010) Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthr Cartil 18:73–81

    Article  PubMed  CAS  Google Scholar 

  47. Bryk B, Hahn K, Cohen SM, Teleman AA (2010) MAP4K3 regulates body size and metabolism in Drosophila. Dev Biol 344:150–157

    Article  PubMed  CAS  Google Scholar 

  48. Bohensky J, Terkhorn SP, Freeman TA, Adams CS, Garcia JA, Shapiro IM et al (2009) Regulation of autophagy in human and murine cartilage: hypoxia-inducible factor 2 suppresses chondrocyte autophagy. Arthr Rheum 60:1406–1415

    Article  Google Scholar 

  49. Carames B, Hasegawa A, Taniguchi N, Miyaki S, Blanco FJ, Lotz M (2012) Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann Rheum Dis 71:575–581

    Article  PubMed  CAS  Google Scholar 

  50. Carames B, Taniguchi N, Seino D, Blanco FJ, D’Lima D, Lotz M (2012) Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthr Rheum 64:1182–1192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shujing Cai for assistance with the establishment of model rats and Jintao Hu, Department of Immunology, Fourth Military Medical University for assistance with flow cytometry analysis. This work was supported by grants from the National Natural Science Foundation of China (No. 30772429, No. 30801315 and No.81271169).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Qing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Zhang, J., Lu, L. et al. Enhancement of chondrocyte autophagy is an early response in the degenerative cartilage of the temporomandibular joint to biomechanical dental stimulation. Apoptosis 18, 423–434 (2013). https://doi.org/10.1007/s10495-013-0811-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0811-0

Keywords

Navigation