Skip to main content

Advertisement

Log in

Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs), small and non-coding endogenous RNAs ∼22 nucleotides (nt) in length, have been known to regulate approximately 30 % of human gene expression at the post-transcriptional and translational levels. Accumulating data have demonstrated that certain miRNAs could exert an oncogenic and/or tumor suppressive function and might play essential roles in the regulation of apoptosis and autophagy in cancer. In this review, we summarize that certain oncogenic and tumor suppressive miRNAs could modulate apoptotic pathways in different types of cancer. Subsequently, we demonstrate that other miRNAs might play regulatory roles in the autophagic pathways of cancer. A limited number of oncogenic/tumor suppressive miRNAs could regulate apoptosis and autophagy, respectively, and cooperatively. Taken together, these findings would provide a new clue to elucidate more apoptotic and/or autophagic mechanisms of miRNAs for designing potential novel therapeutic strategies in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3′-UTR:

3′-Untranslated region

Atg:

Autophagy-related gene

ATM:

Ataxia telangiectasia mutated

CCND1:

Cyclin D1

C. elegans :

Caenorhabditis elegans

CLL:

Chronic lymphocytic leukemia

CML:

Chronic myelogenous leukemia

COX-2:

Cyclooxygenase-2

CRC:

Colorectal cancer

cyto. c :

Cytochrome c

DISC:

Death-inducing signaling complex

ER-α:

Estrogen receptor alpha

EZH2:

Enhancer of zeste homolog 2

FAF1:

Fas-associated factor 1

FAP-1:

Fas-associated phosphatase-1

FADD:

Fas-associated death domain

FIP200:

Focal adhesion kinase family interacting protein of 200 kDa

GC:

Gastric cancer

HCC:

Hepatocellular carcinoma

HMGA2:

High mobility group A2

HMGB1:

High mobility group box 1

hnRNP A1:

Heterogeneous nuclear ribonucleoprotein A1

LNN:

Lymph node negative

MET:

Mesenchymal-epithelial transition factor

miRNA:

MicroRNA

MLL:

Mixed-lineage leukemia

mTORC1:

Mammalian target of rapamycin complex 1

NKTL:

NK/T cell lymphoma

NSCLC:

Non-small cell lung cancer

MB:

Medulloblastoma

MM:

Multiple myeloma

PDCD4:

Programmed cell death 4

PLK1:

Polo-like kinase 1

PRC1:

Protein regulator of cytokinesis 1

PSC:

Pancreatic stellate cell

RCC:

Renal cell carcinoma

TP53INP1:

Tumor protein 53-induced nuclear protein 1

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  2. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lawrie CH (2007) MicroRNAs and haematology: small molecules, big function. Br J Haematol 137:503–512

    Article  CAS  PubMed  Google Scholar 

  5. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  CAS  PubMed  Google Scholar 

  7. Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, Liu CG, Yang JM (2009) Regulation of autophagy by a Beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5:816–823

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Tait SW, Green DR (2012) Mitochondria and cell signalling. J Cell Sci 125:807–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Estaquier J, Vallette F, Vayssiere JL, Mignotte B (2012) The mitochondrial pathways of apoptosis. Adv Exp Med Biol 942:157–183

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J, Zhao F, Yin H (2010) Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep 24:1217–1223

    CAS  PubMed  Google Scholar 

  11. Castagnino P, Kothapalli D, Hawthorne EA, Liu SL, Xu T, Rao S, Yung Y, Assoian RK (2013) miR-221/222 compensates for Skp2-mediated p27 degradation and is a primary target of cell cycle regulation by prostacyclin and cAMP. PLoS ONE 8:e56140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wang P, Zhuang L, Zhang J, Fan J, Luo J, Chen H, Wang K, Liu L, Chen Z, Meng Z (2013) The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol 7:334–345

    Article  CAS  PubMed  Google Scholar 

  13. Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, Jin Y (2010) miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS ONE 5:e9429

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Schickel R, Park SM, Murmann AE, Peter ME (2010) miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 38:908–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M, Boldrini R, Donfrancesco A, Federici V, Giacomini P, Peschle C, Fruci D (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 3:e2236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Tu Y, Wan L, Fan Y, Wang K, Bu L, Huang T, Cheng Z, Shen B (2013) Ischemic postconditioning-mediated miRNA-21 protects against cardiac ischemia/reperfusion injury via PTEN/Akt pathway. PLoS ONE 8:e75872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, Yang WD, Wang GX, Jiang T, You YP, Pu PY, Cheng JQ, Kang CS (2010) MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer 9:229

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Liu JJ, Lin M, Yu JY, Liu B, Bao JK (2011) Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett 300:105–114

    Article  CAS  PubMed  Google Scholar 

  19. Molitoris JK, McColl KS, Distelhorst CW (2011) Glucocorticoid-mediated repression of the oncogenic microRNA cluster miR-17–92 contributes to the induction of Bim and initiation of apoptosis. Mol Endocrinol 25:409–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z (2012) MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep 27:594–598

    CAS  PubMed  Google Scholar 

  21. Gocek E, Wang X, Liu X, Liu CG, Studzinski GP (2011) MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis. Cancer Res 71:6230–6239

    Article  CAS  PubMed  Google Scholar 

  22. Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, Xiong W, Li G, Lu J, Fodstad O, Riker AI, Tan M (2010) MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 285:21496–21507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Veronese A, Lupini L, Consiglio J, Visone R, Ferracin M, Fornari F, Zanesi N, Alder H, D’Elia G, Gramantieri L, Bolondi L, Lanza G, Querzoli P, Angioni A, Croce CM, Negrini M (2010) Oncogenic role of miR-483-3p at the IGF2/483 locus. Cancer Res 70:3140–3149

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Zhang J, Zhang A, Wang Y, Han L, You Y, Pu P, Kang C (2010) PUMA is a novel target of miR-221/222 in human epithelial cancers. Int J Oncol 37:1621–1626

    Article  CAS  PubMed  Google Scholar 

  25. Adlakha YK, Saini N (2011) MicroRNA-128 downregulates Bax and induces apoptosis in human embryonic kidney cells. Cell Mol Life Sci 68:1415–1428

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka N, Toyooka S, Soh J, Tsukuda K, Shien K, Furukawa M, Muraoka T, Maki Y, Ueno T, Yamamoto H, Asano H, Otsuki T, Miyoshi S (2013) Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol Rep 29:2169–2174

    PubMed  Google Scholar 

  27. Shen J, Wan R, Hu G, Yang L, Xiong J, Wang F, Shen J, He S, Guo X, Ni J, Guo C, Wang X (2012) miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology 12:91–99

    Article  CAS  PubMed  Google Scholar 

  28. Xu J, Liao X, Wong C (2010) Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer 126:1029–1035

    CAS  PubMed  Google Scholar 

  29. Ouyang YB, Lu Y, Yue S, Giffard RG (2012) miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 12:213–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Shen J, Wan R, Hu G, Yang L, Xiong J, Wang F, Shen J, He S, Guo X, Ni J, Guo C, Wang X (2012) miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 33:1294–1301

    Article  CAS  Google Scholar 

  31. Liu L, Yu X, Guo X, Tian Z, Su M, Long Y, Huang C, Zhou F, Liu M, Wu X, Wang X (2010) miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep 5:753–760

    Google Scholar 

  32. Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T (2010) Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int J Cancer 127:1072–1080

    Article  CAS  PubMed  Google Scholar 

  33. Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, Tatsumi T, Ishida H, Noda T, Nagano H, Doki Y, Mori M, Hayashi N (2010) The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol 52:698–704

    Article  CAS  PubMed  Google Scholar 

  34. Meunier L, Siddeek B, Vega A, Lakhdari N, Inoubli L, Bellon RP, Lemaire G, Mauduit C, Benahmed M (2012) Perinatal programming of adult rat germ cell death after exposure to xenoestrogens: role of microRNA miR-29 family in the down-regulation of DNA methyltransferases and Mcl-1. Endocrinology 153:1936–1947

    Article  CAS  PubMed  Google Scholar 

  35. Luo L, Zhang T, Liu H, Lv T, Yuan D, Yao Y, Lv Y, Song Y (2012) MiR-101 and Mcl-1 in non-small-cell lung cancer: expression profile and clinical significance. Med Oncol 29:1681–1686

    Article  CAS  PubMed  Google Scholar 

  36. Chen J, Zhang X, Lentz C, Abi-Daoud M, Paré GC, Yang X, Feilotter HE, Tron VA (2011) miR-193b regulates Mcl-1 in melanoma. Am J Pathol 179:2162–2168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Shang J, Yang F, Wang Y, Wang Y, Xue G, Mei Q, Wang F, Sun S (2014) MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J Cell Biochem 115:772–784

    Article  CAS  PubMed  Google Scholar 

  38. Walker JC, Harland RM (2009) MicroRNA-24a is required to repress apoptosis in the developing neural retina. Genes Dev 23:1046–1051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ugalde AP, Ramsay AJ, de la Rosa J, Varela I, Mariño G, Cadiñanos J, Lu J, Freije JM, López-Otín C (2011) Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J 30:2219–2232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Le MT, Shyh-Chang N, Khaw SL, Chin L, Teh C, Tay J, O’Day E, Korzh V, Yang H, Lal A, Lieberman J, Lodish HF, Lim B (2011) Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet 7:e1002242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Krell J, Frampton AE, Colombo T, Gall TM, De Giorgio A, Harding V, Stebbing J, Castellano L (2013) The p53 miRNA interactome and its potential role in the cancer clinic. Epigenomics 5:417–428

    Article  CAS  PubMed  Google Scholar 

  42. Olive V, Sabio E, Bennett MJ, De Jong CS, Biton A, McGann JC, Greaney SK, Sodir NM, Zhou AY, Balakrishnan A, Foth M, Luftig MA, Goga A, Speed TP, Xuan Z, Evan GI, Wan Y, Minella AC, He L (2013) A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis. Elife 2:e00822

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Chen L, Li C, Zhang R, Gao X, Qu X, Zhao M, Qiao C, Xu J, Li J (2011) miR-17-92 cluster microRNAs confers tumorigenicity in multiple myeloma. Cancer Lett 309:62–70

    Article  CAS  PubMed  Google Scholar 

  44. Jin HY, Oda H, Lai M, Skalsky RL, Bethel K, Shepherd J, Kang SG, Liu WH, Sabouri-Ghomi M, Cullen BR, Rajewsky K, Xiao C (2013) MicroRNA-17–92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J 32:2377–2391

    Article  CAS  PubMed  Google Scholar 

  45. Dong J, Zhao YP, Zhou L, Zhang TP, Chen G (2011) Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch Med Res 42:8–14

    Article  CAS  PubMed  Google Scholar 

  46. Chang KH, Miller N, Kheirelseid EA, Ingoldsby H, Hennessy E, Curran CE, Curran S, Smith MJ, Regan M, McAnena OJ, Kerin MJ (2011) MicroRNA-21 and PDCD4 expression in colorectal cancer. Eur J Surg Oncol 37:597–603

    Article  CAS  PubMed  Google Scholar 

  47. Grunder E, D’Ambrosio R, Fiaschetti G, Abela L, Arcaro A, Zuzak T, Ohgaki H, Lv SQ, Shalaby T, Grotzer M (2011) MicroRNA-21 suppression impedes medulloblastoma cell migration. Eur J Cancer 47:2479–2490

    Article  CAS  PubMed  Google Scholar 

  48. Zaman MS, Shahryari V, Deng G, Thamminana S, Saini S, Majid S, Chang I, Hirata H, Ueno K, Yamamura S, Singh K, Tanaka Y, Tabatabai ZL, Dahiya R (2012) Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS ONE 7:e31060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Satzger I, Mattern A, Kuettler U, Weinspach D, Niebuhr M, Kapp A, Gutzmer R (2012) microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp Dermatol 21:509–514

    Article  CAS  PubMed  Google Scholar 

  50. Eto K, Iwatsuki M, Watanabe M, Ida S, Ishimoto T, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, Baba H (2013) The MICRORNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann Surg Oncol 21:343–350

    Article  PubMed  Google Scholar 

  51. Ling N, Gu J, Lei Z, Li M, Zhao J, Zhang HT, Li X (2013) microRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma. Oncol Rep 30:2111–2118

    CAS  PubMed  Google Scholar 

  52. Levati L, Pagani E, Romani S, Castiglia D, Piccinni E, Covaciu C, Caporaso P, Bondanza S, Antonetti FR, Bonmassar E, Martelli F, Alvino E, D’Atri S (2011) MicroRNA-155 targets the SKI gene in human melanoma cell lines. Pigment Cell Melanoma Res 24:538–550

    Article  CAS  PubMed  Google Scholar 

  53. Zhang CM, Zhao J, Deng HY (2013) MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J Biomed Sci 20:79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Hao J, Zhang C, Zhang A, Wang K, Jia Z, Wang G, Han L, Kang C, Pu P (2012) miR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncol Rep 27:1504–1510

    CAS  PubMed  Google Scholar 

  55. Shi W, Gerster K, Alajez NM, Tsang J, Waldron L, Pintilie M, Hui AB, Sykes J, P’ng C, Miller N, McCready D, Fyles A, Liu FF (2011) MicroRNA-301 mediates proliferation and invasion in human breast cancer. Cancer Res 71:2926–2937

    Article  CAS  PubMed  Google Scholar 

  56. Zhou P, Jiang W, Wu L, Chang R, Wu K, Wang Z (2012) miR-301a is a candidate oncogene that targets the homeobox gene Gax in human hepatocellular carcinoma. Dig Dis Sci 57:1171–1180

    Article  CAS  PubMed  Google Scholar 

  57. Chen Z, Chen LY, Dai HY, Wang P, Gao S, Wang K (2012) miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting Bim expression. J Cell Biochem 113:3225–3229

    Google Scholar 

  58. Xiang Q, Tang H, Yu J, Yin J, Yang X, Lei X (2013) MicroRNA-98 sensitizes cisplatin-resistant human lung adenocarcinoma cells by up-regulation of HMGA2. Pharmazie 68:274–281

    CAS  PubMed  Google Scholar 

  59. Zhao Y, Deng C, Wang J, Xiao J, Gatalica Z, Recker RR, Xiao GG (2011) Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer. Breast Cancer Res Treat 127:69–80

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Lee CG (2009) MicroRNA and cancer—focus on apoptosis. J Cell Mol Med 13:12–23

    Article  PubMed  CAS  Google Scholar 

  61. Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, Tatsumi T, Ishida H, Noda T, Nagano H, Doki Y, Mori M, Hayashi N (2010) The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol 52:698–704

    Article  CAS  PubMed  Google Scholar 

  62. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu CG, Kipps TJ, Negrini M, Croce CM (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 105:5166–5171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Cai CK, Zhao GY, Tian LY, Liu L, Yan K, Ma YL, Ji ZW, Li XX, Han K, Gao J, Qiu XC, Fan QY, Yang TT, Ma BA (2012) miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol Rep 28:1764–1770

    CAS  PubMed  Google Scholar 

  64. Shen J, Wan R, Hu G, Yang L, Xiong J, Wang F, Shen J, He S, Guo X, Ni J, Guo C, Wang X (2012) miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology 12:91–99

    Article  CAS  PubMed  Google Scholar 

  65. Weeraratne SD, Amani V, Neiss A, Teider N, Scott DK, Pomeroy SL, Cho Y (2011) miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma. Neuro Oncol 13:165–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Hiroki E, Suzuki F, Akahira J, Nagase S, Ito K, Sugawara J, Miki Y, Suzuki T, Sasano H, Yaegashi N (2012) MicroRNA-34b functions as a potential tumor suppressor in endometrial serous adenocarcinoma. Int J Cancer 131:E395–E404

    Article  CAS  PubMed  Google Scholar 

  67. Hagman Z, Larne O, Edsjö A, Bjartell A, Ehrnström RA, Ulmert D, Lilja H, Ceder Y (2010) miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer 127:2768–2776

    Article  CAS  PubMed  Google Scholar 

  68. Zhang JG, Guo JF, Liu DL, Liu Q, Wang JJ (2011) MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol 6:671–678

    Article  PubMed  Google Scholar 

  69. Huang F, Lin C, Shi YH, Kuerban G (2013) MicroRNA-101 inhibits cell proliferation, invasion, and promotes apoptosis by regulating cyclooxygenase-2 in Hela cervical carcinoma cells. Asian Pac J Cancer Prev 14:5915–5920

    Article  PubMed  Google Scholar 

  70. Gong J, Zhang JP, Li B, Zeng C, You K, Chen MX, Yuan Y, Zhuang SM (2013) MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene 32:3071–3079

    Article  CAS  PubMed  Google Scholar 

  71. Ugras S, Brill E, Jacobsen A, Hafner M, Socci ND, Decarolis PL, Khanin R, O’Connor R, Mihailovic A, Taylor BS, Sheridan R, Gimble JM, Viale A, Crago A, Antonescu CR, Sander C, Tuschl T, Singer S (2011) Small RNA sequencing and functional characterization reveals MicroRNA-143 tumor suppressor activity in liposarcoma. Cancer Res 71:5659–5669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Borralho PM, Simões AE, Gomes SE, Lima RT, Carvalho T, Ferreira DM, Vasconcelos MH, Castro RE, Rodrigues CM (2011) miR-143 overexpression impairs growth of human colon carcinoma xenografts in mice with induction of apoptosis and inhibition of proliferation. PLoS ONE 6:e23787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Paik JH, Jang JY, Jeon YK, Kim WY, Kim TM, Heo DS, Kiam CW (2011) MicroRNA-146a downregulates NFκB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin Cancer Res 17:4761–4771

    Article  CAS  PubMed  Google Scholar 

  74. Hou Z, Xie L, Yu L, Qian X, Liu B (2012) MicroRNA-146a is down-regulated in gastric cancer and regulates cell proliferation and apoptosis. Med Oncol 29:886–892

    Article  CAS  PubMed  Google Scholar 

  75. Dou L, Li J, Zheng D, Li Y, Gao X, Xu C, Gao L, Wang L, Yu L (2013) MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia. Onco Targets Ther 6:1153–1160

    PubMed Central  PubMed  Google Scholar 

  76. Majid S, Saini S, Dar AA, Hirata H, Shahryari V, Tanaka Y, Yamamura S, Ueno K, Zaman MS, Singh K, Chang I, Deng G, Dahiya R (2011) MicroRNA-205 inhibits Src-mediated oncogenic pathways in renal cancer. Cancer Res 71:2611–2621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M (2011) miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem 286:16606–16614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Zheng Y, Yin L, Chen H, Yang S, Pan C, Lu S, Miao M, Jiao B (2012) miR-376a suppresses proliferation and induces apoptosis in hepatocellular carcinoma. FEBS Lett 586:2396–2403

    Article  CAS  PubMed  Google Scholar 

  79. Liu B, Wen X, Cheng Y (2013) Survival or death: disequilibrating the oncogenic and tumor suppressive autophagy in cancer. Cell Death Dis 4:e892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Wen X, Wu J, Wang F, Liu B, Huang C, Wei Y (2013) Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic Biol Med 65:402–410

    Article  CAS  PubMed  Google Scholar 

  81. Cheng Y, Ren X, Hait WN, Yang JM (2013) Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol Rev 65:1162–1197

    Article  CAS  PubMed  Google Scholar 

  82. Ciuffreda L, Di Sanza C, Incani UC, Milella M (2010) The mTOR pathway: a new target in cancer therapy. Curr Cancer Drug Targets 10:484–495

    Article  CAS  PubMed  Google Scholar 

  83. Huang Y, Chuang AY, Ratovitski EA (2011) Phospho-DeltaNp63alpha/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle 10:3938–3947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Wang J, Yang K, Zhou L, Minhaowu WuY, Zhu M, Lai X, Chen T, Feng L, Li M, Huang C, Zhong Q, Huang X (2013) MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog 9:e1003697

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Fu LL, Cheng Y, Liu B (2013) Beclin-1: autophagic regulator and therapeutic target in cancer. Int J Biochem Cell Biol 45:921–924

    Article  CAS  PubMed  Google Scholar 

  86. He C, Levine B (2010) The Beclin 1 interactome. Curr Opin Cell Biol 22:140–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Yu Y, Yang L, Zhao M, Zhu S, Kang R, Vernon P, Tang D, Cao L (2012) Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia 26:1752–1760

    Article  CAS  PubMed  Google Scholar 

  88. Korkmaz G, le Sage C, Tekirdag KA, Agami R, Gozuacik D (2012) miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 8:165–176

    Article  CAS  PubMed  Google Scholar 

  89. Zhai H, Fesler A, Ju J (2013) MicroRNA: a third dimension in autophagy. Cell Cycle 12:246–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Huang Y, Guerrero-Preston R, Ratovitski EA (2012) Phospho-DeltaNp63alpha-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle 11:1247–1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Xu Y, An Y, Wang Y, Zhang C, Zhang H, Huang C, Jiang H, Wang X, Li X (2013) miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 29:2019–2024

    CAS  PubMed  Google Scholar 

  92. Shi G, Shi J, Liu K, Liu N, Wang Y, Fu Z, Ding J, Jia L, Yuan W (2013) Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61:504–512

    Article  PubMed  Google Scholar 

  93. Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, Czyzyk-Krzeska MF (2012) VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21:532–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Chang Y, Yan W, He X, Zhang L, Li C, Huang H, Nace G, Geller DA, Lin J, Tsung A (2012) miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology 143:177–187

    Article  CAS  PubMed  Google Scholar 

  95. Comincini S, Allavena G, Palumbo S, Morini M, Durando F, Angeletti F, Pirtoli L, Miracco C (2013) microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther 14:574–586

    Article  CAS  PubMed  Google Scholar 

  96. Frankel LB, Lund AH (2012) MicroRNA regulation of autophagy. Carcinogenesis 33:2018–2025

    Article  CAS  PubMed  Google Scholar 

  97. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17:236–245

    Article  CAS  PubMed  Google Scholar 

  98. Meenhuis A, van Veelen PA, de Looper H, van Boxtel N, van den Berge IJ, Sun SM, Taskesen E, Stern P, de Ru AH, van Adrichem AJ, Demmers J, Jongen-Lavrencic M, Löwenberg B, Touw IP, Sharp PA, Erkeland SJ (2011) MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood 118:916–925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Qased AB, Yi H, Liang N, Ma S, Qiao S, Liu X (2013) MicroRNA-18a upregulates autophagy and ataxia telangiectasia mutated gene expression in HCT116 colon cancer cells. Mol Med Rep 7:559–564

    CAS  PubMed  Google Scholar 

  100. Gwak HS, Kim TH, Jo GH, Kim YJ, Kwak HJ, Kim JH, Yin J, Yoo H, Lee SH, Park JB (2012) Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS ONE 7:e47449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, Liu CG, Yang JM (2009) Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5:816–823

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Wan G, Xie W, Liu Z, Xu W, Lao Y, Huang N, Cui K, Liao M, He J, Jiang Y, Yang BB, Xu H, Xu N, Zhang Y (2014) Hypoxia-induced miR155 is a potent autophagy inducer by targeting multiple players in the mTOR pathway. Autophagy 10:70–79

    Article  PubMed  Google Scholar 

  103. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283:29897–29903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Korkmaz G, le Sage C, Tekirdag KA, Agami R, Gozuacik D (2012) miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 8:165–176

    Article  CAS  PubMed  Google Scholar 

  105. Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L, Zhuang L, Luo J, Chen H, Liu L, Chen Z, Meng Z (2013) MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 145:1133–1143

    Article  CAS  PubMed  Google Scholar 

  106. Majid S, Dar AA, Saini S, Deng G, Chang I, Greene K, Tanaka Y, Dahiya R, Yamamura S (2013) MicroRNA-23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer. PLoS ONE 8:e67686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Frankel LB, Wen J, Lees M, Høyer-Hansen M, Farkas T, Krogh A, Jäättelä M, Lund AH (2011) microRNA-101 is a potent inhibitor of autophagy. EMBO J 30:4628–4641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Pennati M, Lopergolo A, Profumo V, De Cesare M, Sbarra S, Valdagni R, Zaffaroni N, Gandellini P, Folini M (2014) miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochem Pharmacol 87:579–597

    CAS  PubMed  Google Scholar 

  109. Chang Y, Lin J, Tsung A (2012) Manipulation of autophagy by MIR375 generates antitumor effects in liver cancer. Autophagy 8:1833–1834

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Liu J, Zhu H, Yang X, Ge Y, Zhang C, Qin Q, Lu J, Zhan L, Cheng H, Sun X (2014) MicroRNA-21 is a novel promising target in cancer radiation therapy. Tumour Biol. doi:10.1002/j.1532-2149.2014.00455.x

  111. Shahbazi J, Lock R, Liu T (2013) Tumor protein 53-induced nuclear protein 1 enhances p53 function and represses tumorigenesis. Front Genet 4:80

    Article  PubMed Central  PubMed  Google Scholar 

  112. Chen WX, Hu Q, Qiu MT, Zhong SL, Xu JJ, Tang JH, Zhao JH (2013) miR-221/222: promising biomarkers for breast cancer. Tumour Biol 34:1361–1370

    Article  CAS  PubMed  Google Scholar 

  113. Xu L, Beckebaum S, Iacob S, Wu G, Kaiser GM, Radtke A, Liu C, Kabar I, Schmidt HH, Zhang X, Lu M, Cicinnati VR (2014) MicroRNA-101 inhibits human hepatocellular carcinoma progression through EZH2 downregulation and increased cytostatic drug sensitivity. J Hepatol 60:590–598

    Article  CAS  PubMed  Google Scholar 

  114. Liu K, Huang J, Xie M, Yu Y, Zhu S, Kang R, Cao L, Tang D, Duan X (2014) MIR34A regulates autophagy and apoptosis by targeting HMGB1 in the retinoblastoma cell. Autophagy 10:442–452

    Article  PubMed  Google Scholar 

  115. Seoudi AM, Lashine YA, Abdelaziz AI (2012) MicroRNA-181a-a tale of discrepancies. Expert Rev Mol Med 14:e5

    Article  PubMed  CAS  Google Scholar 

  116. Fujiya M, Konishi H, Mohamed Kamel MK, Ueno N, Inaba Y, Moriichi K, Tanabe H, Ikuta K, Ohtake T, Kohgo Y (2013) microRNA-18a induces apoptosis in colon cancer cells via the autophagolysosomal degradation of oncogenic heterogeneous nuclear ribonucleoprotein A1. Oncogene. doi:10.1038/onc.2013.429

    PubMed  Google Scholar 

  117. Yu Y, Cao L, Yang L, Kang R, Lotze M, Tang D (2012) microRNA 30A promotes autophagy in response to cancer therapy. Autophagy 8:853–855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Zou Z, Wu L, Ding H, Wang Y, Zhang Y, Chen X, et al (2012) MicroRNA-30a sensitizes tumor cells to cis- platinum via suppressing beclin 1-mediated autophagy. J Biol Chem 2012; 287:4148–4156. doi:10.1074/jbc.M111.307405

  119. Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G (2012) miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 12:27–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Zhai H, Song B, Xu X, Zhu W, Ju J (2013) Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene 32:1570–1579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yan Cheng (Pennsylvania State University) for her critical review on this manuscript. We are also grateful to the revision of this manuscript by Elsevier Webshop. This work was supported by grants from the National 973 Basic Research Program of China (No. 2010CB529900), the Key Projects of the National Science and Technology Pillar Program (No. 2012BAI30B02), the National Natural Science Foundation of China (Nos. 81160543, 81260628, 81303270 and 81172374), the West China Hospital-Chengdu Science and Technology Department Translational Medicine Innovation Foundation (No. ZH13039), and the Shenyang Pharmaceutical University Scientific Research Fund (No. ZCJJ2013407).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Liu or J. Huang.

Additional information

Y. Chen, L. L. Fu and X. Wen have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fu, L.L., Wen, X. et al. Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis 19, 1177–1189 (2014). https://doi.org/10.1007/s10495-014-0999-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0999-7

Keywords

Navigation