Skip to main content
Log in

Blockade of PKCβ protects against remote organ injury induced by intestinal ischemia and reperfusion via a p66shc-mediated mitochondrial apoptotic pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Intestinal ischemia–reperfusion (I/R) is a serious clinical dilemma with high morbidity and mortality. Remote organ damage, especially acute lung injury and liver injury are common complications that contribute to the high mortality rate. We previously demonstrated that activation of PKCβII is specifically involved in the primary injury of intestinal I/R. Considering the tissue-specific features of PKC activation, we hypothesized that some kind of PKC isoform may play important roles in the progression of secondary injury in the remote organ. Mice were studied in in vivo model of intestinal I/R. The activation of PKC isoforms were screened in the lung and liver. Interestingly, we found that PKCβII was also activated exclusively in the lung and liver after intestinal I/R. PKCβII suppression by a specific inhibitor, LY333531, significantly attenuated I/R-induced histologic damage, inflammatory cell infiltration, oxidative stress, and apoptosis in these organs, and also alleviated systemic inflammation. In addition, LY333531 markedly restrained p66shc activation, mitochondrial translocation, and binding to cytochrome-c. These resulted in the decrease of cytochrome-c release and caspase-3 cleavage, and an increase in glutathione and glutathione peroxidase. These data indicated that activated PKC isoform in the remote organ, specifically PKCβII, is the same as that in the intestine after intestinal I/R. PKCβII suppression protects against remote organ injury, which may be partially attributed to the p66shc-cytochrome-c axis. Combined with our previous study, the development of a specific inhibitor for prophylaxis against intestinal I/R is promising, to prevent multiple organ injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reino DC, Palanyge D, Feketeova E, Bonitz RP, Xu DZ, Lu Q, Sheth SU, Pena G, Ulloa L, De Maio A (2012) Activation of toll-like receptor 4 is necessary for trauma hemorrhagic shock-induced gut injury and polymorphonuclear neutrophil priming. Shock 38:107–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Tadros T, Traber DL, Heggers JP, Herndon DN (2003) Effects of interleukin-1alpha administration on intestinal ischemia and reperfusion injury, mucosal permeability, and bacterial translocation in burn and sepsis. Ann Surg 237:101–109

    Article  PubMed Central  PubMed  Google Scholar 

  3. Levy RM, Mollen KP, Prince JM, Kaczorowski DJ, Vallabhaneni R, Liu S, Tracey KJ, Lotze MT, Hackam DJ, Fink MP (2007) Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol 293:R1538–R1544

    CAS  PubMed  Google Scholar 

  4. Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, Gross GJ, Salzman NH, Baker JE (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26:1727–1735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hsieh YH, McCartney K, Moore TA, Thundyil J, Gelderblom M, Manzanero S, Arumugam TV (2011) Intestinal ischemia-reperfusion injury leads to inflammatory changes in the brain. Shock 36:424–430

    Article  CAS  PubMed  Google Scholar 

  6. Tendler DA (2003) Acute intestinal ischemia and infarction. Semin Gastrointest Dis 14:66–76

    PubMed  Google Scholar 

  7. Matsuo S, Yang WL, Aziz M, Jacob A, Wang P (2013) Cyclic arginine-glycine-aspartate attenuates acute lung injury in mice after intestinal ischemia/reperfusion. Crit Care 17:R19

    Article  PubMed Central  PubMed  Google Scholar 

  8. Horie Y, Wolf R, Miyasaka M, Anderson DC, Granger DN (1996) Leukocyte adhesion and hepatic microvascular responses to intestinal ischemia/reperfusion in rats. Gastroenterology 111:666–673

    Article  CAS  PubMed  Google Scholar 

  9. Cui T, Miksa M, Wu R, Komura H, Zhou M, Dong W, Wang Z, Higuchi S, Chaung W, Blau SA (2010) Milk fat globule epidermal growth factor 8 attenuates acute lung injury in mice after intestinal ischemia and reperfusion. Am J Respir Crit Care Med 81:238–246

    Google Scholar 

  10. Mochly-Rosen D, Das K, Grimes KV (2012) Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov 11:937–957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fujita T, Asai T, Andrassy M, Stern DM, Pinsky DJ, Zou YS, Okada M, Naka Y, Schmidt AM, Yan SF (2004) PKCbeta regulates ischemia/reperfusion injury in the lung. J Clin Invest 113:1615–1623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Xu J, Li T, Yang GM, Liu LM (2010) Protein kinase C isoforms responsible for the regulation of vascular calcium sensitivity and their relationship to integrin-linked kinase pathway after hemorrhagic shock. J Trauma 69:1274–1281

    Article  CAS  PubMed  Google Scholar 

  13. Chen Z, Wang G, Zhai X, Hu Y, Gao D, Ma L, Yao J, Tian X (2014) Selective inhibition of protein kinase C β2 attenuates the adaptor P66 Shc-mediated intestinal ischemia-reperfusion injury. Cell Death Dis 5:e1164

    Article  CAS  PubMed  Google Scholar 

  14. Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M, Contursi C, Minucci S, Mantovani F, Wieckowski MR (2007) Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315:659–663

    Article  CAS  PubMed  Google Scholar 

  15. Migliaccio E, Giorgio M, Pelicci PG (2006) Apoptosis and aging: role of p66Shc redox protein. Antioxid Redox Signal 8:600–608

    Article  CAS  PubMed  Google Scholar 

  16. Cosentino F, Francia P, Camici GG, Pelicci PG, Luscher TF, Volpe M (2008) Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 28:622–628

    Article  CAS  PubMed  Google Scholar 

  17. Fadini GP, Albiero M, Menegazzo L, Boscaro E, Pagnin E, Iori E, Cosma C, Lapolla A, Pengo V, Stendardo M (2010) The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes 59:2306–2314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Haga S, Terui K, Fukai M, Oikawa Y, Irani K, Furukawa H, Todo S, Ozaki M (2008) Preventing hypoxia/reoxygenation damage to hepatocytes by p66(shc) ablation: up-regulation of anti-oxidant and anti-apoptotic proteins. J Hepatol 48:422–432

    Article  CAS  PubMed  Google Scholar 

  19. Wang GZ, Yao JH, Jing HR, Zhang F, Lin MS, Shi L, Wu H, Gao DY, Liu KX, Tian XF (2012) Suppression of the p66shc adapter protein by protocatechuic acid prevents the development of lung injury induced by intestinal ischemia reperfusion in mice. J Trauma Acute Care Surg 73:1130–1137

    Article  CAS  PubMed  Google Scholar 

  20. Lane JS, Todd KE, Lewis MP, Gloor B, Ashley SW, Reber HA, McFadden DW, Chandler CF (1997) Interleukin-10 reduces the systemic inflammatory response in a murine model of intestinal ischemia/reperfusion. Surgery 122:288–294

    Article  CAS  PubMed  Google Scholar 

  21. Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN (1970) Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg 101:478–483

    Article  CAS  PubMed  Google Scholar 

  22. Mikawa K, Nishina K, Takao Y, Obara H (2003) ONO-1714, a nitric oxide synthase inhibitor, attenuates endotoxin-induced acute lung injury in rabbits. Anesth Analg 97:1751–1755

    Article  CAS  PubMed  Google Scholar 

  23. Eckhoff DE, Bilbao G, Frenette L, Thompson JA, Contreras JL (2002) 17-Beta-estradiol protects the liver against warm ischemia/reperfusion injury and is associated with increased serum nitric oxide and decreased tumor necrosis factor-alpha. Surgery 132:302–309

    Article  PubMed  Google Scholar 

  24. Lei S, Li H, Xu J, Liu Y, Gao X, Wang J, Ng KF, Lau WB, Ma XL, Rodrigues B (2013) Hyperglycemia-induced protein kinase C beta2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes 62:2318–2328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Jing H, Shen G, Wang G, Zhang F, Li Y, Luo F, Yao J, Tian XF (2012) MG132 alleviates liver injury induced by intestinal ischemia/reperfusion in rats: involvement of the AhR and NFkappaB pathways. J Surg Res 176:63–73

    Article  CAS  PubMed  Google Scholar 

  26. Zheng X, Mao Y, Cai J, Li Y, Liu W, Sun P, Zhang JH, Sun X, Yuan H (2009) Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free Radic Res 43:478–484

    Article  CAS  PubMed  Google Scholar 

  27. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233

    Article  CAS  PubMed  Google Scholar 

  28. Nemoto S, Finkel T (2002) Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295:2450–2452

    Article  CAS  PubMed  Google Scholar 

  29. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  CAS  PubMed  Google Scholar 

  30. Ustundag B, Kazez A, Demirbag M, Canatan H, Halifeoglu I, Ozercan IH (2000) Protective effect of melatonin on antioxidative system in experimental ischemia-reperfusion of rat small intestine. Cell Physiol Biochem 10:229–236

    Article  CAS  PubMed  Google Scholar 

  31. Allford M, Bew S (2010) Ventricular fibrillation in an ex-premature neonate following reperfusion of ischemic gut incarcerated within an inguinal hernia. Paediatr Anaesth 20:763–766

    Article  PubMed  Google Scholar 

  32. Zhi-Yong S, Dong YL, Wang XH (1992) Bacterial translocation and multiple system organ failure in bowel ischemia and reperfusion. J Trauma 32:148–153

    Article  CAS  PubMed  Google Scholar 

  33. Grotz MR, Deitch EA, Ding J, Xu D, Huang Q, Regel G (1999) Intestinal cytokine response after gut ischemia: role of gut barrier failure. Ann Surg 229:478–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Almeida M, Han L, Ambrogini E, Bartell SM, Manolagas SC (2010) Oxidative stress stimulates apoptosis and activates NF-kappaB in osteoblastic cells via a PKCbeta/p66shc signaling cascade: counter regulation by estrogens or androgens. Mol Endocrinol 24:2030–2037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–285

    Article  CAS  PubMed  Google Scholar 

  36. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  37. Papathanassoglou ED, Moynihan JA, Ackerman MH (2000) Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? a review and a theoretical framework. Crit Care Med 28:537–549

    CAS  PubMed  Google Scholar 

  38. Arany I, Faisal A, Clark JS, Vera T, Baliga R, Nagamine Y (2010) p66SHC-mediated mitochondrial dysfunction in renal proximal tubule cells during oxidative injury. Am J Physiol Renal Physiol 298:F1214–F1221

    CAS  PubMed  Google Scholar 

  39. Seo BN, Ryu JM, Yun SP, Jeon JH, Park SS, Oh KB, Park JK, Han HJ (2013) Delphinidin prevents hypoxia-induced mouse embryonic stem cell apoptosis through reduction of intracellular reactive oxygen species-mediated activation of JNK and NF-κB, and Akt inhibition. Apoptosis 18:811–824

    Article  CAS  PubMed  Google Scholar 

  40. Inagaki K, Chen L, Ikeno F, Lee FH, Imahashi K, Bouley DM, Rezaee M, Yock PG, Murphy E, Mochly-Rosen D (2003) Inhibition of delta-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation 108:2304–2307

    Article  CAS  PubMed  Google Scholar 

  41. Tanaka M, Terry RD, Mokhtari GK, Inagaki K, Koyanagi T, Kofidis T, Mochly-Rosen D, Robbins RC (2004) Suppression of graft coronary artery disease by a brief treatment with a selective epsilonPKC activator and a deltaPKC inhibitor in murine cardiac allografts. Circulation 110:194–199

    Google Scholar 

  42. Kong L, Andrassy M, Chang JS, Huang C, Asai T, Szabolcs MJ, Homma S, Liu R, Zou YS, Leitges M, Yan SD, Ramasamy R, Schmidt AM, Yan SF (2008) PKCbeta modulates ischemia-reperfusion injury in the heart. Am J Physiol Heart Circ Physiol 294:H1862–H1870

    CAS  PubMed  Google Scholar 

  43. Baiocchi L, Tisone G, Russo MA, Longhi C, Palmieri G, Volpe A, Almerighi C, Telesca C, Carbone M, Toti L, De Leonardis F, Angelico M (2008) TUDCA prevents cholestasis and canalicular damage induced by ischemia-reperfusion injury in the rat, modulating PKCalpha-ezrin pathway. Transpl Int 21:792–800

    Article  CAS  PubMed  Google Scholar 

  44. Wei L, Sun D, Yin Z, Yuan Y, Hwang A, Zhang Y, Si R, Zhang R, Guo W, Cao F (2010) A PKC-beta inhibitor protects against cardiac microvascular ischemia reperfusion injury in diabetic rats. Apoptosis 15:488–498

    Article  CAS  PubMed  Google Scholar 

  45. Sheetz MJ, Aiello LP, Davis MD, Danis R, Bek T, Cunha-Vaz J, Shahri N, Berg PH (2013) The effect of the oral PKC beta inhibitor ruboxistaurin on vision loss in two phase 3 studies. Invest Ophthalmol Vis Sci 54:1750–1757

    Article  CAS  PubMed  Google Scholar 

  46. Tesfaye S, Tandan R, Bastyr ER, Kles KA, Skljarevski V, Price KL (2007) Factors that impact symptomatic diabetic peripheral neuropathy in placebo-administered patients from two 1-year clinical trials. Diabetes Care 30:2626–2632

    Article  PubMed  Google Scholar 

  47. Tuttle KR, McGill JB, Haney DJ, Lin TE, Anderson PW (2007) Kidney outcomes in long-term studies of ruboxistaurin for diabetic eye disease. Clin J Am Soc Nephrol 2:631–636

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Chinese National Natural Science Foundation (No. 81171850, 81372037).

Conflict of interests

The authors have no competing interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jihong Yao or Xiaofeng Tian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Chen, Z., Zhang, F. et al. Blockade of PKCβ protects against remote organ injury induced by intestinal ischemia and reperfusion via a p66shc-mediated mitochondrial apoptotic pathway. Apoptosis 19, 1342–1353 (2014). https://doi.org/10.1007/s10495-014-1008-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1008-x

Keywords

Navigation