Skip to main content

Advertisement

Log in

Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Tissue inhibitor of metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in ECs in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in ECs expressing KDR (PAE/KDR), but not in ECs expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  CAS  PubMed  Google Scholar 

  2. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  4. Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87:1153–1155

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  6. Chavakis E, Dimmeler S (2002) Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 22:887–893

    Article  CAS  PubMed  Google Scholar 

  7. Gerber HP, McMurtrey A, Kowalski J et al (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273:30336–30343

    Article  CAS  PubMed  Google Scholar 

  8. Bischoff J (1997) Cell adhesion and angiogenesis. J Clin Invest 99:373–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chavakis E, Aicher A, Heeschen C et al (2005) Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 201:63–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Apte SS, Olsen B, Murphy G (1995) The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J Biol Chem 270:14313–14318

    Article  CAS  PubMed  Google Scholar 

  11. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  CAS  PubMed  Google Scholar 

  12. Anand-Apte B, Bao L, Smith R et al (1996) A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimentsl analysis of its effect on primary tumor growth. Biochem Cell Biol 74:853–862

    Article  CAS  PubMed  Google Scholar 

  13. Cruz-Munoz W, Kim I, Khokha R (2006) TIMP-3 deficiency in the host, but not in the tumor, enhances tumor growth and angiogenesis. Oncogene 25:650–655

    Article  CAS  PubMed  Google Scholar 

  14. Cruz-Munoz W, Sanchez OH, Di Grappa M, English JL, Hill RP, Khokha R (2006) Enhanced metastatic dissemination to multiple organs by melanoma and lymphoma cells in timp-3-/- mice. Oncogene 25:6489–6496

    Article  CAS  PubMed  Google Scholar 

  15. Lafleur MA, Handsley MM, Edwards DR (2003) Metalloproteinases and their inhibitors in angiogenesis. Expert Rev Mol Med 5:1–39

    Article  PubMed  Google Scholar 

  16. Majid MA, Smith VA, Easty DL, Baker AH, Newby AC (2002) Adenovirus mediated gene delivery of tissue inhibitor of metalloproteinases-3 induces death in retinal pigment epithelial cells. Br J Ophthalmol 86:97–101

    Article  PubMed Central  PubMed  Google Scholar 

  17. Baker AH, Zaltsman AB, George SJ, Newby AC (1998) Divergent effects of tissue inhibitor of metalloproteinase-1,-2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest 101:1478–1487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ahonen M, Baker AH, Kahari VM (1998) Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res 58:2310–2315

    CAS  PubMed  Google Scholar 

  19. Smith M, Kung H, Durum S, Colburn N, Sun Y (1997) TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine 9:770–780

    Article  CAS  PubMed  Google Scholar 

  20. Baker A, George S, Zaltsman A, Murphy G, Newby A (1999) Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer 79:1347–1355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Langton K, Barker M, McKie N (1998) Localization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby’s fundus dystrophy mutation. J Biol Chem 273:16778–16781

    Article  CAS  PubMed  Google Scholar 

  22. Bond M, Murphy G, Bennett MR et al (2000) Localization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus. Metalloproteinase inhibition is associated with proapoptotic activity. J Biol Chem 275:41358–41363

    Article  CAS  PubMed  Google Scholar 

  23. Ahonen M, Poukkula M, Baker AH et al (2003) Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene 22:2121–2134

    Article  CAS  PubMed  Google Scholar 

  24. Bond M, Murphy G, Bennett MR, Newby AC, Baker AH (2002) Tissue inhibitor of metalloproteinase-3 induces a Fas-associated death domain-dependent type II apoptotic pathway. J Biol Chem 277:13787–13795 Epub 12002 Feb 13784

    Article  CAS  PubMed  Google Scholar 

  25. Fata JE, Leco KJ, Voura EB et al (2001) Accelerated apoptosis in the Timp-3-deficient mammary gland. J Clin Invest 108:831–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Mohammed FF, Smookler DS, Taylor SE et al (2004) Abnormal TNF activity in Timp3-/- mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet 36:969–977

    Article  CAS  PubMed  Google Scholar 

  27. Qi JH, Ebrahem Q, Moore N et al (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9:407–415

    Article  CAS  PubMed  Google Scholar 

  28. Folkman J (2003) Angiogenesis and apoptosis. Semin Cancer Biol 13:159–167

    Article  CAS  PubMed  Google Scholar 

  29. Wen LP, Fahrni JA, Troie S, Guan JL, Orth K, Rosen GD (1997) Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem 272:26056–26061

    Article  CAS  PubMed  Google Scholar 

  30. Tait SW, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol 5(9):a008706

    Article  PubMed  Google Scholar 

  31. Wozniak MA, Modzelewska K, Kwong L, Keely PJ (2004) Focal adhesion regulation of cell behavior. Biochim Biophys Acta 1692:103–119

    Article  CAS  PubMed  Google Scholar 

  32. Anand-Apte B, Pepper MS, Voest E et al (1997) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest Ophthal Vis Sci 38:817–823

    CAS  PubMed  Google Scholar 

  33. Qi JH, Ebrahem Q, Yeow K, Edwards DR, Fox PL, Anand-Apte B (2002) Expression of Sorsby’s fundus dystrophy mutations in human retinal pigment epithelial cells reduces matrix metalloproteinase inhibition and may promote angiogenesis. J Biol Chem 30:30

    Google Scholar 

  34. Qi JH, Dai G, Luthert P et al (2009) S156C mutation in tissue inhibitor of metalloproteinases-3 induces increased angiogenesis. J Biol Chem 284:19927–19936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Qi JH, Ebrahem Q, Ali M et al (2013) Tissue inhibitor of metalloproteinases-3 peptides inhibit angiogenesis and choroidal neovascularization in mice. PLoS One 8:e55667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Fox SB, Gatter KC, Leek RD et al (2000) More about: tumor angiogenesis as a prognostic assay for invasive ductal breast carcinoma. J Natl Cancer Inst 92:161–162

    Article  CAS  PubMed  Google Scholar 

  37. Gasparini G, Weidner N, Bevilacqua P et al (1994) Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J Clin Oncol 12:454–466

    CAS  PubMed  Google Scholar 

  38. Weidner N, Folkman J, Pozza F et al (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84:1875–1887

    Article  CAS  PubMed  Google Scholar 

  39. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  CAS  PubMed  Google Scholar 

  40. Helleman J, Jansen MP, Ruigrok-Ritstier K et al (2008) Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response. Clin Cancer Res 14:5555–5564

    Article  CAS  PubMed  Google Scholar 

  41. Mylona E, Magkou C, Giannopoulou I et al (2006) Expression of tissue inhibitor of matrix metalloproteinases (TIMP)-3 protein in invasive breast carcinoma: relation to tumor phenotype and clinical outcome. Breast Cancer Res 8:R57

    Article  PubMed Central  PubMed  Google Scholar 

  42. Gu P, Xing X, Tanzer M et al (2008) Frequent loss of TIMP-3 expression in progression of esophageal and gastric adenocarcinomas. Neoplasia 10:563–572

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Hilska M, Roberts PJ, Collan YU et al (2007) Prognostic significance of matrix metalloproteinases-1, -2, -7 and -13 and tissue inhibitors of metalloproteinases-1, -2, -3 and -4 in colorectal cancer. Int J Cancer 121:714–723

    Article  CAS  PubMed  Google Scholar 

  44. Lai K, Conway RM, Crouch R, Jager MJ, Madigan MC (2008) Expression and distribution of MMPs and TIMPs in human uveal melanoma. Exp Eye Res 86:936–941

    Article  CAS  PubMed  Google Scholar 

  45. Ninomiya I, Kawakami K, Fushida S et al (2008) Quantitative detection of TIMP-3 promoter hypermethylation and its prognostic significance in esophageal squamous cell carcinoma. Oncol Rep 20:1489–1495

    CAS  PubMed  Google Scholar 

  46. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730

    Article  PubMed  Google Scholar 

  47. Putcha GV, Le S, Frank S et al (2003) JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38:899–914

    Article  CAS  PubMed  Google Scholar 

  48. Liu W, Ahmad SA, Reinmuth N et al (2000) Endothelial cell survival and apoptosis in the tumor vasculature. Apoptosis 5:323–328

    Article  CAS  PubMed  Google Scholar 

  49. Borges E, Jan Y, Ruoslahti E (2000) Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J Biol Chem 275:39867–39873

    Article  CAS  PubMed  Google Scholar 

  50. Schneller M, Vuori K, Ruoslahti E (1997) Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBO J 16:5600–5607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882–892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Woodard AS, Garcia-Cardena G, Leong M, Madri JA, Sessa WC, Languino LR (1998) The synergistic activity of alphavbeta3 integrin and PDGF receptor increases cell migration. J Cell Sci 111(Pt 4):469–478

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by US National Institute of Health EY016490 (BA-A), EY020861 (BA-A), EY022768 (JHQ), Foundation Fighting Blindness Center Grant (BA-A), Research to Prevent Blindness (RPB) Challenge Grant and RPB Lew Wasserman award to BA-A. We are grateful to Mariya Ali and Alecia Cutler for providing technical assistance. We wish to extend a sincere apology to colleagues whose work was not cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bela Anand-Apte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2014_1076_MOESM1_ESM.tif

DEVD and Z-IETD inhibit Caspase 3 and Caspase 8 respectively in PAE cell lysates. Analysis of Caspase 3 and Caspase 8 activity in cell lysates from PAE-KDR/V (V) and PAE-KDR/T3 (W1 and W3) cells treated with DEVD (10 μM), Z-IETD (30 μM) or DMSO as a vehicle control. Supplementary material 1 (TIFF 454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J.H., Anand-Apte, B. Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism. Apoptosis 20, 523–534 (2015). https://doi.org/10.1007/s10495-014-1076-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1076-y

Keywords

Navigation