Skip to main content

Advertisement

Log in

The role of endoplasmic reticulum stress in neurodegenerative disease

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The endoplasmic reticulum (ER) is an important organelle involved in cellular homeostasis and control of protein quality. Unfolded protein response (UPR) is a cellular response to ER stress and promotes cell survival. Severe or prolonged stress activates apoptosis signaling to trigger cell death. In mammals, the UPR is initiated by three major ER stress sensors, including inositol-requiring transmembrane kinase 1, double-stranded RNA-activated protein kinase-like ER kinase and activating transcription factor 6. UPR dysfunction plays an important role in the pathogenesis of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and Huntington’s disease, which is characterized by the accumulation and aggregation of misfolded proteins. ER stress mediates the pathogenesis of psychiatric diseases, such as depression, schizophrenia, sleep fragmentation and post-traumatic stress disorder. The role of UPR in the neuropathology of humans, cell lines and animal models, is established. Therefore, inhibition of specific ER mediators may contribute to the treatment and prevention of neurodegeneration. Preclinical studies have shed light on the potential therapeutic strategies. Here, we will review the evidence of UPR activation in neurodegenerative disorders and psychiatric diseases along with the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ 13:374–384

    Article  CAS  PubMed  Google Scholar 

  2. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  3. Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26:504–510

    Article  CAS  PubMed  Google Scholar 

  4. Ledoux S, Yang R, Friedlander G et al (2003) Glucose depletion enhances P-glycoprotein expression in hepatoma cells: role of endoplasmic reticulum stress response. Cancer Res 63:7284–7290

    CAS  PubMed  Google Scholar 

  5. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harding HP, Zhang Y, Bertolotti A et al (2000) PERK is essential for translational regulation and cell survival during the unfolded protein response. Mol Cel 5: 897–904

    Article  CAS  Google Scholar 

  7. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  CAS  PubMed  Google Scholar 

  8. Cui W, Li J, Ron D et al (2011) The structure of the PERK kinase domain suggests the mechanism for its activation. Acta Crystallogr D Biol Crystallogr 67:423–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bertolotti A, Zhang Y, Hendershot LM et al (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    Article  CAS  PubMed  Google Scholar 

  10. Ma K, Vattem KM, Wek RC (2002) Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J Biol Chem 277:18728–18735

    Article  CAS  PubMed  Google Scholar 

  11. Shin BS, Maag D, Roll-Mecak A et al (2002) Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111:1015–1025

    Article  CAS  PubMed  Google Scholar 

  12. Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Halperin L, Jung J, Michalak M (2014) The many functions of the endoplasmic reticulum chaperones and folding enzymes. IUBMB Life 66:318–326

    Article  CAS  PubMed  Google Scholar 

  14. Novoa I, Zeng H, Harding HP et al (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153:1011–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang XZ, Ron D (1996) Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 272:1347–1349

    Article  CAS  PubMed  Google Scholar 

  16. Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 38:317–332

    Article  CAS  PubMed  Google Scholar 

  17. Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279:20108–20117

    Article  CAS  PubMed  Google Scholar 

  18. Urano F, Bertolotti A, Ron D (2000) Ire1 and efferent signaling from the endoplasmic reticulum. J Cell Sci 113:3697–3702

    CAS  PubMed  Google Scholar 

  19. Boot-Handford R, Briggs MD (2010) The unfolded protein response and its relevance to connective tissue diseases. Cell Tissue Res 339:197–211

    Article  CAS  PubMed  Google Scholar 

  20. Acosta-Alvear D, Zhou Y, Blais A et al (2007) Xbp1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 27:53–66

    Article  CAS  PubMed  Google Scholar 

  21. Nishitoh H, Matsuzawa A, Tobiume K et al (2002) HAsk1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gardner BM, Walter P (2011) Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333:1891–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hetz C, Glimcher LH (2009) Fine-tuning of the unfolded protein response: assembling the IRE1 alpha interactome. Mol Cell 35:551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Upton JP, Wang L, Han D et al (2012) Ire1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2. Science 338:818–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kang MJ, Chung J, Ryoo HD (2012) Cdk5 and mekk1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model. Nat Cell Biol 14:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen X, Shen J, Prywes R (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277:13045–13052

    Article  CAS  PubMed  Google Scholar 

  27. Haze K, Yoshida H, Yanagi H et al (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haze K, Okada T, Yoshida H et al (2001) Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem J 355:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haas IG, Wabl M (1983) Immunoglobulin heavy chain binding protein. Nature 306:387–389

    Article  CAS  PubMed  Google Scholar 

  30. Munro S, Pelham HR (1986) An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300

    Article  CAS  PubMed  Google Scholar 

  31. Normington K, Kohno K, Kozutsumi Y et al (1989) S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57:1223–1236

    Article  CAS  PubMed  Google Scholar 

  32. Pouyssegur J, Shiu RP, Pastan I (1977) Induction of two transformation- sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation. Cell 11: 941–947

    Article  CAS  PubMed  Google Scholar 

  33. Shen J, Chen X, Hendershot L et al (2002) ER stress regulation of atf6 localization by dissociation of bip/grp78 binding and unmasking of Golgi localization signals. Dev Cell 3:99–111

    Article  CAS  PubMed  Google Scholar 

  34. Okamura K, Kimata Y, Higashio H et al (2000) Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem Biophys Res Commun 279:445–450

    Article  CAS  PubMed  Google Scholar 

  35. Kokame K, Kato H, Miyata T(2001) Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem 276:9199–9205

  36. Yoshida H, Okada T, Haze K et al (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20:6755–6767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu J, Rutkowski DT, Dubois M, et al2007) ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13:351–364

    Article  CAS  PubMed  Google Scholar 

  38. Yamamoto K, Sato T, Matsui T et al (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of atf6alpha and xbp1. Dev Cell 13:365–376

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  40. Belmont PJ, Tadimalla A, Chen WJ et al (2008) Coordination of growth and endoplasmic reticulum stress signaling by regulator of calcineurin 1 (RCAN1), a novel ATF6-inducible gene. J Biol Chem 283:14012–14021. doi:10.1074/jbc.M709776200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang HG, Pathan N, Ethell IM et al (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343

    Article  CAS  PubMed  Google Scholar 

  42. Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108:2777–2793. doi:10.1002/bit.23282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nadanaka S, Yoshida H, Mori K (2006) Reduction of disulfide bridges in the luminal domain of ATF6 in response to glucose starvation. Cell Struct Funct 31:127–134

    Article  CAS  PubMed  Google Scholar 

  44. Nadanaka S, Okada T, Yoshida H et al (2007) Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol Cell Biol 27:1027–1043

    Article  CAS  PubMed  Google Scholar 

  45. Jiang T, Yu JT, Tan L (2012) Novel disease-modifying therapies for Alzheimer’s disease. J Alzheimer’s Dis 31:475–492. doi:10.3233/JAD-2012-120640

    CAS  Google Scholar 

  46. Ferreira ST, Klein WL (2011) The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 96:529–543. doi:10.1016/j.nlm.2011.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang T, Yu JT, Tian Y et al (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr Alzheimer’s Res 10:852–867

    Article  CAS  Google Scholar 

  48. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086. doi:10.1126/science.1209038

    Article  CAS  PubMed  Google Scholar 

  49. Thal DR, Del Tredici K, Ludolph AC et al (2011) Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol 122:577–589. doi:10.1007/s00401-011-0871-6

    Article  CAS  PubMed  Google Scholar 

  50. Hoozemans JJ, Veerhuis R, Van Haastert ES et al (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 110:165–172

    Article  CAS  PubMed  Google Scholar 

  51. Resende R, Ferreiro E, Pereira C et al (2008) ER stress is involved in Abeta-induced GSK-3beta activation and tau phosphorylation. J Neurosci Res 86:2091–2099. doi:10.1002/jnr.21648

    Article  CAS  PubMed  Google Scholar 

  52. Leroy K, Boutajangout A, Authelet M et al (2002) The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer’s disease. Acta Neuropathol 103:91–99

    Article  CAS  PubMed  Google Scholar 

  53. Endres K, Reinhardt S (2013) ER-stress in Alzheimer’s disease: turning the scale. Am J Neurodegener Dis 2:247–265

    PubMed  PubMed Central  Google Scholar 

  54. Hoozemans JJ, van Haastert ES, Nijholt DA et al (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174:1241–1251. doi:10.2353/ajpath.2009.080814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chang RC, Wong AK, Ng HK et al (2002) Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) is associated with neuronal degeneration in Alzheimer’s disease. Neuroreport 13:2429–2432

    Article  CAS  PubMed  Google Scholar 

  56. O’Connor T, Sadleir KR, Maus E et al (2008) Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 60:988–1009. doi:10.1016/j.neuron.2008.10.047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mouton-Liger F, Paquet C, Dumurgier J et al (2012) Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway. Biochim Biophys Acta 1822:885–896. doi:10.1016/j.bbadis.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  58. Boyce M, Bryant KF, Jousse C et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939

    Article  CAS  PubMed  Google Scholar 

  59. Katayama T, Imaizumi K, Honda A et al (2001) Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer’s disease-linked presenilin-1 mutations. J Biol Chem 276:43446–43454

    Article  CAS  PubMed  Google Scholar 

  60. Kim HS, Choi Y, Shin KY et al (2007) Swedish amyloid precursor protein mutation increases phosphorylation of eIF2alpha in vitro and in vivo. J Neurosci Res 85:1528–1537

    Article  CAS  PubMed  Google Scholar 

  61. Devi L, Ohno M (2014) PERK mediates eIF2αphosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer’s disease. Neurobiol Aging 35:2272–2281. doi:10.1016/j.neurobiolaging

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Clarke JR, Lyra E Silva NM et al (2015) Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic eregulation. EMBO Mol Med 7:190–210. doi:10.15252/emmm.201404183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yasuda Y, Kudo T, Katayama T et al (2002) FAD-linked presenilin-1 mutants impede translation regulation under ER stress. Biochem Biophys Res Commun 296:313–318

    Article  CAS  PubMed  Google Scholar 

  64. Spatara ML, Robinson AS (2010) Transgenic mouse and cell culture models demonstrate a lack of mechanistic connection between endoplasmic reticulum stress and tau dysfunction. J Neurosci Res 88:1951–1961. doi:10.1002/jnr.22359

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stutzbach LD, Xie SX, Naj AC et al (2013) The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease. Acta Neuropathol Commun 1:31.doi:10.1186/2051-5960-1-31

    Article  PubMed  PubMed Central  Google Scholar 

  66. Unterberger U, Höftberger R, Gelpi E et al (2006) Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 65:348–357

    Article  CAS  PubMed  Google Scholar 

  67. Lee DY, Lee KS, Lee HJ et al (2010) Activation of PERK signaling attenuates Abeta-mediated ER stress. Plos One 5:e10489. doi:10.1371/journal.pone.0010489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Li JQ, Yu JT, Jiang T et al (2015) Endoplasmic reticulum dysfunction in Alzheimer’s disease. Mol Neurobiol 51:383–395. doi:10.1007/s12035-014-8695-8

    Article  CAS  PubMed  Google Scholar 

  69. Katayama T, Imaizumi K, Sato N et al (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1:479–485

    Article  CAS  PubMed  Google Scholar 

  70. Nijholt DA, de Graaf TR, van Haastert ES et al (2011) Endoplasmic reticulum stress activates autophagy but not the proteasome in neuronal cells: implications for Alzheimer’s disease. Cell Death Differ 18:1071–1081. doi:10.1038/cdd.2010.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee JH, Won SM, Suh J et al (2010) Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp Mol Med 42:386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sato N, Imaizumi K, Manabe T et al (2001) Increased production of beta-amyloid and vulnerability to endoplasmic reticulum stress by an aberrant spliced form of presenilin 2. J Biol Chem 276:2108–2114

    Article  CAS  PubMed  Google Scholar 

  74. Gupta S, Deegan S, Lisbona F et al (2010) HSP72 protects cells from ER stress induced apoptosis via enhancement of IRE1a-XBP1 signaling through a physical interaction. PLoS Biol 8:e1000410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Song J, Park KA, Lee WT et al (2014) Apoptosis signal regulating kinase 1 (ASK1): potential as a therapeutic target for Alzheimer’s disease. Int J Mol Sci 15:2119–2129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833:3460–3470

    Article  CAS  PubMed  Google Scholar 

  77. Akterin S, Cowburn RF, Miranda-Vizuete A et al (2006) Involvement of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and Alzheimer’s disease. Cell Death Differ 13:1454–1465

    Article  CAS  PubMed  Google Scholar 

  78. Pinkaew D, Changtam C, Tocharus C et al (2015) Di-O-demethylcurcumin protects SK-N-SH cells against mitochondrial and endoplasmic reticulum-mediated apoptotic cell death induced by Aβ25-35. Neurochem Int 80:110–119. doi:10.1016/j.neuint.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  79. De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  80. Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B et al (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548–S559. doi:10.1002/mds.22062

    Article  PubMed  Google Scholar 

  81. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609

    Article  CAS  PubMed  Google Scholar 

  82. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    Article  CAS  PubMed  Google Scholar 

  83. Sarkar S, Raymick J, Imam S (2016) Neuroprotective and therapeutic strategies against Parkinson’s disease: recent perspectives. Int J Mol Sci 17:E904. doi:10.3390/ijms17060904

    Article  PubMed  Google Scholar 

  84. Hoozemans JJ, van Haastert ES, Eikelenboom P et al (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354:707–711

    Article  CAS  PubMed  Google Scholar 

  85. Smith WW, Jiang H, Pei Z et al (2005) Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet 14:3801–3811

    Article  CAS  PubMed  Google Scholar 

  86. Colla E, Coune P, Liu Y et al (2012) Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J Neurosci 32:3306–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Holtz WA, O’Malley KL et al (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278:19367–19377

    Article  CAS  PubMed  Google Scholar 

  88. Sun X, Liu J, Crary JF et al (2013) ATF4 protects against neuronal death in cellular Parkinson’s disease models by maintaining levels of parkin. J Neurosci 33:2398–2407. doi:10.1523/JNEUROSCI.2292-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bellucci A, Navarria L, Zaltieri M et al (2011) Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson’s disease. J Neurochem 116:588–605

    Article  CAS  PubMed  Google Scholar 

  90. Bouman L, Schlierf A, Lutz AK et al (2011) Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ 18:769–782. doi:10.1038/cdd.2010.142

    Article  CAS  PubMed  Google Scholar 

  91. Varma D, Sen D (2015) Role of the unfolded protein response in the pathogenesis of Parkinson’s disease. Acta Neurobiol Exp (Wars) 75:1–26

    Google Scholar 

  92. Valdes P, Mercado G, Vidal RL et al (2014) Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. Proc Natl Acad Sci U S A 111:6804–6809. doi:10.1073/pnas.1321845111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102

    CAS  PubMed  Google Scholar 

  94. Matus S, Castillo K, Hetz C (2012) Hormesis: protecting neurons against cellular stress in Parkinson disease. Autophagy 8:997–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fouillet A, Levet C, Virgone A et al (2012) ER stress inhibits neuronal death by promoting autophagy. Autophagy 8:915–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ray A, Zhang S, Rentas C et al (2014) RTCB-1 mediates neuroprotection via XBP-1 mRNA splicing inthe unfolded protein response pathway. J Neurosci 34:16076–16085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Sado M, Yamasaki Y, Iwanaga T et al (2009) Protective effect against Parkinson’s disease-related insults through the activation of XBP1. Brain Res 1257:16–24. doi:10.1016/j.brainres

    Article  CAS  PubMed  Google Scholar 

  98. Si L, Xu T, Wang F et al (2012) X- box-binding protein 1-modified neural stem cells for treatment of Parkinson’s disease. Neural Regen Res 7:736–740. doi:10.3969/j.issn.1673-5374.2012.10.003

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mercado G, Castillo V, Vidal R et al. (2015) ER proteostasis disturbances in Parkinson’s disease:novel insights. Front Aging Neurosci 7:39.doi:10.3389/fnagi.2015.00039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Langston JW, Ballard P, Tetrud JW et al (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  101. Egawa N, Yamamoto K, Inoue H et al (2011) The endoplasmic reticulum stress sensor, ATF6 alpha, protects against neurotoxin-induced dopaminergic neuronal death. J Biol Chem 286:7947–7957. doi:10.1074/jbc.M110.156430

    Article  CAS  PubMed  Google Scholar 

  102. Gorbatyuk MS, Shabashvili A, Chen W et al (2012) Glucose regulated protein 78 diminishes α-synuclein neurotoxicity in a rat model of parkinson disease. Mol Ther 20:1327–1337. doi:10.1038/mt.2012.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hashida K, Kitao Y, Sudo H et al (2012) ATF6alpha promotes astroglial activation and neuronal survival in a chronic mouse model of parkinson’s disease. PLoS One 7:e47950. doi:10.1371/journal.pone.0047950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hetz C, Martinon F, Rodriguez D et al (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev 91:1219–1243. doi:10.1152/physrev.00001.2011

    Article  CAS  PubMed  Google Scholar 

  105. Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7: 710–723

    Article  CAS  PubMed  Google Scholar 

  106. Kieran D, Woods I, Villunger A et al (2007) Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice. Proc Natl Acad Sci USA 104:20606–20611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Atkin JD, Farg MA, Walker AK et al (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis 30:400–407. doi:10.1016/j.nbd.2008.02.009

    Article  CAS  PubMed  Google Scholar 

  108. Hetz C, Thielen P, Matus S et al (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 23:2294–2306. doi:10.1101/gad.1830709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ilieva EV, Ayala V, Jov′e M et al (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–3123

    Article  PubMed  Google Scholar 

  110. Sasaki S (2010) Endoplasmic reticulum stress in motor neurons of the spinal cord in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 69:346–355. doi:10.1097/NEN.0b013e3181d44992

    Article  PubMed  Google Scholar 

  111. Oyanagi K, Yamazaki M, Takahashi H et al (2008) Spinal anterior horn cells in sporadic amyotrophic lateral sclerosis show ribosomal detachment from, and cisternal distention of the rough endoplasmic reticulum. Neuropathol Appl Neurobiol 34:650–658. doi:10.1111/j.1365-2990.2008.00941.x

    Article  CAS  PubMed  Google Scholar 

  112. Atkin JD, Farg MA, Turner BJ et al (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281:30152–30165

    Article  CAS  PubMed  Google Scholar 

  113. Kikuchi H, Almer G, Yamashita S et al (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci U S A 103:6025–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nagata T, Ilieva H, Murakami T et al (2007) Increased ER stress during motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol Res 29:767–771

    Article  PubMed  Google Scholar 

  115. Chen D, Wang Y, Chin ER (2015) Activation of the endoplasmic reticulum stress response in skeletal muscle of G93A*SOD1 amyotrophic lateral sclerosis mice. Front Cell Neurosci 9:170

    PubMed  PubMed Central  Google Scholar 

  116. Wang L, Popko B, Roos RP (2011) The unfolded protein response in familial amyotrophic lateral sclerosis. Hum Mol Genet 20:1008–1015

    Article  CAS  PubMed  Google Scholar 

  117. Matus S, Lopez E, Valenzuela V et al (2013) Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis. PLoS One 8:e66672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tong J, Huang C, Bi F et al (2012) XBP1 depletion precedes ubiquitin aggregation and Golgi fragmentation in TDP-43 transgenic rats. J Neurochem 123:406–416. doi:10.1111/jnc.12014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vaccaro A, Patten SA, Aggad D et al (2013) Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol Dis 55:64–75. doi:10.1016/j.nbd.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  120. Kim HJ, Raphael AR, LaDow ES et al (2014) Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46:152–160. doi:10.1038/ng.2853

    Article  CAS  PubMed  Google Scholar 

  121. Prell T, Lautenschla JG, Witte OW et al (2012) The unfolded protein response in models of human mutant G93A amyotrophic lateral sclerosis. Eur J Neurosci 35:652–660

    Article  CAS  PubMed  Google Scholar 

  122. Tsaytler P, Harding HP, Ron D et al (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332:91–94

    Article  CAS  PubMed  Google Scholar 

  123. Vieira FG, Ping Q, Moreno AJ et al (2015) Guanabenz treatment accelerates disease in a mutant SOD1 mouse model of ALS. PLoS One 10:e0135570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Nishimura AL, Mitne-Neto M, Silva HC et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75: 822–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tokutake Y, Gushima K, Miyazaki H et al (2015) ALS-associated P56S-VAPB mutation restrains 3T3-L1 preadipocyte differentiation. Biochem Biophys Res Commun 460:831–837. doi:10.1016/j.bbrc.2015.03.118

    Article  CAS  PubMed  Google Scholar 

  126. Wang L, Popko B, Roos RP (2014) An enhanced integrated stress response ameliorates mutant SOD1-induced ALS. Hum Mol Genet 23:2629–2638. doi:10.1093/hmg/ddt658

    Article  CAS  PubMed  Google Scholar 

  127. Matus S, Valenzuela V, Medinas DB et al (2013) ER dysfunction and protein folding stress in ALS. Int J Cell Biol 2013: 674751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Hetz C, Lee AH, Gonzalez-Romero D et al (2008) Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Natl Acad Sci USA 105:757–762. doi:10.1073/pnas.0711094105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Huang C, Tong J, Bi F, et al (2012) Mutant TDP-43 in motor neurons promotes the onset andprogression of ALS in rats. J Clin Invest 122:107–118

    Article  CAS  PubMed  Google Scholar 

  130. Igaz LM, Kwong LK, Lee EB et al (2011) Dysregulation of the ALS-associat ed gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest. 121:726–738. doi:10.1172/JCI59130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Valenzuela V, Collyer E, Armentano D (2012) Activation of the unfolded protein response enhances motor recovery after spinal cord injury. Cell Death Dis 3:e272 doi:10.1038/cddis.2012.8

    Article  CAS  PubMed  Google Scholar 

  132. Huang C, Tong J, Bi F et al (2012) Entorhinal cortical neurons are the primary targets of FUS mislocalization and ubiquitin aggregation in FUS transgenic rats. Hum Mol Genet 21:4602–4614. doi:10.1093/hmg/dds299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Calfon M, Zeng H, Urano F et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacityby processing the XBP-1 mRNA. Nature 415:92–96

    Article  CAS  PubMed  Google Scholar 

  134. Audet JN, Soucy G, Julien JP(2012) Methylene blue administration fails to confer neuroprotectionin two amyotrophic lateral sclerosis mouse models. Neuroscience 209:136–143. doi:10.1016/j.neuroscience.2011.12.047

  135. Vaccaro A, Patten SA, Ciura S et al (2012) Methylene blue protects against TDP-43 and FUS neuronaltoxicity in C. elegans and D. Rerio. PLoS One 7:e42117. doi:10.1371/journal.pone.0042117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yamashita M, Nonaka T, Arai T(2009) Methylene blue and dimebon inhibit aggregation of TDP-43in cellular models. FEBS Lett. 583:2419–2424. doi:10.1016/j.febslet.2009.06.042

  137. Vaccaro A, Tauffenberger A, Aggad D, et al (2012) Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. PLoS One 7:e313212012b. doi:10.1371/journal.pone.0031321

    Google Scholar 

  138. Dibaj P, Zschüntzsch J, Steffens H et al (2012) Influence of methylene blue on microglia-induced inflammation and motor neuron degeneration in the SOD1(G93A) model for ALS. PLoS One 7:e43963. doi:10.1371/journal.pone.0043963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kanekura K, Suzuki H, Aiso S et al (2009) ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol Neurobiol. doi:10.1007/s12035-009-8054-3

    PubMed  Google Scholar 

  140. Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat. Neurosci 12:627–36. doi:10.1038/nn.2297

    Article  CAS  PubMed  Google Scholar 

  141. Tokutake Y, Yamada K, Ohata M et al (2015) ALS-linked P56S-VAPB mutation impairs the formation of multinuclear myotube in C2C12 Cells. Int J Mol Sci 16:18628–18641. doi:10.3390/ijms160818628

    Article  PubMed  PubMed Central  Google Scholar 

  142. Teuling E, Ahmed S, Haasdijk E et al (2007) Motor neuron disease-associated mutant vesicle-associated membraneprotein-associated protein (VAP) B recruits wild-type VAPs intoendoplasmic reticulum-derived tubular aggregates. J Neurosci 27:9801–9815

    Article  CAS  PubMed  Google Scholar 

  143. Holasek SS, Wengenack TM, Kandimalla KK et al (2005) Activation of the stress-activated MAP kinase, p38, but not JNK in cortical motor neurons during early presymptomatic stages of amyotrophic lateral sclerosis in transgenic mice. Brain Res 1045:185–198

    Article  CAS  PubMed  Google Scholar 

  144. Veglianese P, Lo Coco D, Bao Cutrona M et al (2006) Activation of the p38MAPK cascade is associated with upregulation ofTNF alpha receptors in the spinal motor neurons of mouse models of familial ALS. Mol Cell Neurosci 2:218–31

    Article  CAS  Google Scholar 

  145. Nishitoh H, Kadowaki H, Nagai A et al (2008) ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22:1451–1464. doi:10.1101/gad.1640108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gkogkas C, Middleton S, Kremer AM et al (2008) VAPB interacts with and modulates the activity of ATF6. Hum Mol Genet 17:1517–1526. doi:10.1093/hmg/ddn040

    Article  CAS  PubMed  Google Scholar 

  147. Soussan L, Burakov D, Daniels MP et al (1999) ERG30, a VAP-33-related protein, functions in protein transport mediated by COPI vesicles. J Cell Biol 146(2):301–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tsukumo Y, Tomida A, Kitahara O et al (2007) Nucleobindin 1 controls the unfolded protein response by inhibiting ATF6 activation. J Biol Chem 282:29264–29272

    Article  CAS  PubMed  Google Scholar 

  149. Wang Y, Shen J, Arenzana N et al (2000) Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J Biol Chem 275(35):27013–27020

    CAS  PubMed  Google Scholar 

  150. Shen J, Snapp EL, Lippincott-Schwartz J (2005) Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol Cell Biol 25:921–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Bossy-Wetzel E, Petrilli A, Knott AB (2008) Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci 31:609–616. doi:10.1016/j.tins.2008.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vidal R, Caballero B, Couve A, Hetz C (2011) Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington’s disease. Curr Mol Med 11:1–12

    Article  CAS  PubMed  Google Scholar 

  153. Rubinsztein DC (2002) Lessons from animal models of Huntington’s Disease. Trends Genet 18:202–209

    Article  CAS  PubMed  Google Scholar 

  154. Ferrante RJ, Kowall NW, Beal MF et al (1987) Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 46:12–27

    Article  CAS  PubMed  Google Scholar 

  155. Kassubek J, Juengling FD, Kioschies T (2004) Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. The Journal of Neurology, Neurosurgery, and Psychiatry 75:213–220

    CAS  PubMed  Google Scholar 

  156. Ruocco HH, Lopes-Cendes I, Li LM et al (2006) Striatal and extrastriatal atrophy in Huntington’s disease and its relationship with length of the CAG repeat. Braz J Med Biol Res 39:1129–1136

    Article  CAS  PubMed  Google Scholar 

  157. Ferrante RJ, Beal MF, Kowall NW et al (1987) Sparing of acetylcholinesterase-containing striatal neurons in Huntington’s disease. Brain Res 411:162–166

    Article  CAS  PubMed  Google Scholar 

  158. Ferrante RJ, Kowall NW, Beal MF et al (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230:561–563

    Article  CAS  PubMed  Google Scholar 

  159. Kreiner G, Bierhoff H, Armentano M et al (2013) A neuroprotective phase precedes striatal degeneration upon nucleolar stress. Cell Death Differ 20:1455–1464. doi:10.1038/cdd.2013.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kouroku Y, Fujita E, Tanida I et al (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14:230–239

    Article  CAS  PubMed  Google Scholar 

  161. Leitman J, Barak B, Benyair R et al (2014) ER stress-induced eIF2-alpha phosphorylation underlies sensitivity of striatal neurons to pathogenic huntingtin. PLoS One 9:e90803. doi:10.1371/journal.pone.0090803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Costa-Mattioli M, Gobert D, Stern E et al (2007) eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Vidal RL, Figueroa A, Court FA et al (2012) Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet 21:2245–2262. doi:10.1093/hmg/dds040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Reijonen S, Putkonen N, Nørremølle A et al (2008) Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res 314:950–960. doi:10.1016/j.yexcr.2007.12.025

    Article  CAS  PubMed  Google Scholar 

  165. Graham RK, Slow EJ, Deng Y (2006) Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models. Neurobiol. Dis 21:444–455

    Article  CAS  PubMed  Google Scholar 

  166. Metzler M, Gan L, Mazarei G (2010) Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. J Neurosci 30:14318–14329. doi:10.1523/JNEUROSCI.1589-10.2010

    Article  CAS  PubMed  Google Scholar 

  167. Arsham AM, Neufeld TP (2009) A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway. PLoS One 4:e6068. doi:10.1371/journal.pone.0006068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Rutkowski DT, Hegde RS (2010) Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol 189:783–794. doi:10.1083/jcb.201003138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhou Y, Lee J, Reno CM, Sun C (2011)Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction. Nat Med 17:356–365. doi:10.1038/nm.2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hyrskyluoto A, Bruelle C, Lundh SH (2014) Ubiquitin-specific protease-14 reduces cellular aggregates and protects against mutant huntingtin-induced cell degeneration: involvement of the proteasome and ER stress-activated kinase IRE1a.Hum Mol Genet 23:5928–5939. doi:10.1093/hmg/ddu317

    Article  CAS  PubMed  Google Scholar 

  171. Lee H, Noh JY, Oh Y et al (2012) IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet 21:101–114. doi:10.1093/hmg/ddr445

    Article  PubMed  CAS  Google Scholar 

  172. Naranjo JR, Zhang H, Villar D et al (2016) Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease. J Clin Invest 126:627–638. doi:10.1172/JCI82670

    Article  PubMed  PubMed Central  Google Scholar 

  173. Yoshida H, Matsui T, Hosokawa N et al (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265–271

    Article  CAS  PubMed  Google Scholar 

  174. Carnemolla A, Fossale E, Agostoni E et al (2009) Rrs1 is involved in endoplasmic reticulum stress response in Huntington disease. J Biol Chem 284:18167–18173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sawamura N, Ando T, Maruyama Y et al (2008) Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly. Mol Psychiatry 13:1138–1148. doi:10.1038/mp.2008.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chubb JE, Bradshaw NJ, Soares DC et al (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13:36–64

    Article  CAS  PubMed  Google Scholar 

  177. Trinh MA, Kaphzan H, Wek RC et al (2012) Brain-specific disruption of the eIF2α kinase PERK decreases ATF4 expression and impairs behavioral flexibility. Cell Rep 1:676–688. doi:10.1016/j.celrep.2012.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Qu M, Tang F, Wang L et al (2008) Associations of ATF4 gene polymorphisms with schizophrenia in male patients. Am J Med Genet B Neuropsychiatr Genet 147B:732–736. doi:10.1002/ajmg.b.30675

    Article  CAS  PubMed  Google Scholar 

  179. Timberlake MA 2nd, Dwivedi Y (2016) Altered expression of endoplasmic reticulum stress associated genes in hippocampus of learned helpless rats: relevance to depression pathophysiology. Front Pharmacol 6:319. doi:10.3389/fphar.2015.00319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Pfaffenseller B, Wollenhaupt-Aguiar B, Fries GR et al (2014) Impaired endoplasmic reticulum stress responsein bipolar disorder: cellular evidence ofillness progression. Int J Neuropsychopharmacol 17:1453–1463. doi:10.1017/S1461145714000443

    Article  CAS  PubMed  Google Scholar 

  181. Kakiuchi C, Ishiwata M, Nanko S et al (2007) Association analysis of ATF4 and ATF5, genes for interacting-proteins of DISC1, in bipolar disorder. Neurosci Lett 417:316–321

    Article  CAS  PubMed  Google Scholar 

  182. Chen G, Ma C, Bower KA et al (2008) Ethanol promotes endoplasmic reticulum stress-induced neuronal death: involvement of oxidative stress. J Neurosci Res 86:937–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hakim F, Wang Y, Carreras A et al (2015) Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and ptp1b-mediated leptin resistance in male mice. Sleep 38:31–40. doi:10.5665/sleep.4320

    PubMed  PubMed Central  Google Scholar 

  184. Toda H, Suzuki G, Nibuya M et al (2006) Behavioral stress and activated serotonergic neurotransmission induce XBP-1 splicing in the rat brain. Brain Res 1112:26–32

    Article  CAS  PubMed  Google Scholar 

  185. Grunebaum MF, Galfalvy HC, Huang YY et al (2009) Association of X-box binding protein 1(XBP1) genotype with morning cortisol and 1-year clinical course after a major depressive episode. Int J Neuropsychopharmacol 12:281–283. doi:10.1017/S1461145708009863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Nevell L, Zhang K, Aiello AE et al (2014) Elevated systemic expression of ER stress related genes is associated with stress-related mental disorders in the Detroit Neighborhood Health Study. Psychoneuroendocrinology 43:62–70. doi:10.1016/j.psyneuen.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kakiuchi C, Iwamoto K, Ishiwata M et al (2003) Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 35:171–175

    Article  CAS  PubMed  Google Scholar 

  188. Hou SJ, Yen FC, Cheng CY.X-box binding protein 1 (XBP1) C-116G polymorphisms in bipolar disorders and age of onset. Neurosci Lett 367:232–234

  189. Cichon S, Buervenich S, Kirov G et al (2004) Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nat Genet 36:783–784

    Article  CAS  PubMed  Google Scholar 

  190. So J, Warsh JJ, Li PP(2007)Impaired endoplasmic reticulumstress response in B-lymphoblasts from patients withbipolar-I disorder. Biol Psychiatry 62:141–147

  191. Hayashi A, Kasahara T, Kametani M et al (2009) Aberrant endoplasmic reticulum stress response in lymphoblastoid cells from patients with bipolar disorder. Int J Neuropsychopharmacol 12:33–43. doi:10.1017/S1461145708009358

    Article  CAS  PubMed  Google Scholar 

  192. Kakiuchi C, Ishiwata M, Umekage T et al (2004) Association of the XBP1–116C/G polymorphism withschizophrenia in the Japanese population. Psychiatry Clin Neurosci 58:438–440

    Article  CAS  PubMed  Google Scholar 

  193. Cheng D, Zhang K, Zhen G, Xue Z (2014)The –116C/G polymorphism in XBP1 gene is associated with psychiatric illness in Asian population: a meta-analysis. Am J Med Genet Part B 165B:665–672. doi:10.1002/ajmg.b.32271

    Article  PubMed  CAS  Google Scholar 

  194. Olney JW, Tenkova T, Dikranian K et al (2002) Ethanol-induced apoptotic neurodegeneration in the developing c57bl/6 mouse brain. Brain Res Dev Brain Res 133:115–126

    Article  CAS  PubMed  Google Scholar 

  195. Goral J, Ramson K, Meyer A(2013) Ethanol down-regulates microglia inflammatory responses augmented by endoplasmic reticulum stress. Alcohol.(7):570

  196. Li X, Han F, Shi Y(2015)IRE1α-XBP1 pathway is activated upon induction of single-prolonged stress in rat neurons of the medial prefrontal cortex. J Mol Neurosci 57:63–72.doi. 10.1007/s12031-015-0577-7

  197. Hedskog L, Pinho CM, Filadi R et al (2013) Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci USA 110:7916–7921. doi:10.1073/pnas.1300677110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Area-Gomez E, de Groof AJ, Boldogh I et al (2009) Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 175:1810–1816. doi:10.2353/ajpath.2009.090219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Schreiner B, Hedskog L, Wiehager B et al (2015) Amyloid-β peptides are generated in mitochondria-associated endoplasmic reticulum membranes. J Alzheimers Dis 43:369–374. doi:10.3233/JAD-132543

    CAS  PubMed  Google Scholar 

  200. Wang S, Song J, Tan M et al (2012) Mitochondrial fission proteins in peripheral blood lymphocytes are potential biomarkers for Alzheimer’s disease. Eur J Neurol 29:1015–1022. doi:10.1111/j.1468-1331.2012.03670.x

    Article  Google Scholar 

  201. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509. doi:10.1093/hmg/ddr139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Muñoz JP, Ivanova S, Sánchez-Wandelmer J et al (2013) Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J 32:2348–2361. doi:10.1038/emboj.2013.168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Rowland AA, Voeltz GK (2012) Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol 13:607–625. doi:10.1038/nrm3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wang X, Wang W, Li L et al (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842:1240–1247. doi:10.1016/j.bbadis.2013.10.015

    Article  CAS  PubMed  Google Scholar 

  205. Hu H, Li M (2016). Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons. Biochem Biophys Res Commun S0006-291X(16)31193–7. doi:10.1016/j.bbrc.2016.07.071

    Google Scholar 

  206. Rozpedek W, Markiewicz L, Diehl JA et al (2015) Unfolded protein response and PERK kinase as a new therapeutic target in the pathogenesis of Alzheimer’s disease. Curr Med Chem 22:3169–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Valenzuela V, Martínez G, Duran-Aniotz C et al (2016) Gene therapy to target ER stress in brain diseases. Brain Res S0006-8993(16)30313–4. doi:10.1016/j.brainres.2016.04.064

    Google Scholar 

  208. Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975. doi:10.1038/cdd.2009.33

    Article  CAS  PubMed  Google Scholar 

  209. Wu L, Luo N, Zhao HR et al (2014) Salubrinal protects against rotenone-induced SH-SY5Y cell death via ATF4-parkin pathway. Brain Res 1549:52–62. doi:10.1016/j.brainres.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  210. Patil SP, Jain PD, Sancheti JS, et al (2014) Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology:192–202. doi:10.1016/j.neuropharm.2014.07.012

    Google Scholar 

  211. Mu X, He G, Cheng Y, ,et al (2009) Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol Biochem Behav 92:642–648. doi:10.1016/j.pbb.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  212. Lougheed R, Turnbull J (2011) Lack of effect of methylene blue in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. PloS One 6:e23141. doi:10.1371/journal.pone.0023141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Filezac de L’Etang A, Maharjan N, Cordeiro Brana M et al (2015) Marinesco-Sjogren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nat Neurosci 18:227–238. doi:10.1038/nn.3903

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by two Grants from the China National Natural Science Foundation (No. 81571324) and Education Department of LiaoNing Province, China (No. LJQ2014083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Han.

Additional information

Chunchen Xiang, Yujia Wang and Han Zhang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, C., Wang, Y., Zhang, H. et al. The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis 22, 1–26 (2017). https://doi.org/10.1007/s10495-016-1296-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1296-4

Keywords

Navigation