Skip to main content
Log in

Role of p62 in the regulation of cell death induction

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

p62 is a multifunctional adaptor protein implicated in various cellular processes. It has been found to regulate selective autophagy, cell survival, cell death, oxidative stress, DNA repair and inflammation, and to play a role in a number of diseases, such as tumourigenesis, Paget’s disease of bone, neurodegenerative disease, diabetes, and obesity. Cell death induction is an important cellular process. The dysregulation of cell death induction is involved in the pathogenesis of various diseases, such as cancer, neurodegeneration diseases, and diabetes. In this review, we discuss the functional role of p62 in inducing cell death in response to multiple stimuli, and we summarize the potential signaling pathways that contribute to this regulation. Given the important role of p62 in regulating cell death, p62 is considered to be a reasonable target for managing cell death dysregulation-related pathogenic conditions. A better understanding of the role of p62 and its related mechanisms in regulating cell death is necessary for the more precise utilization of p62 as a target for treating relevant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–12343

    Article  CAS  PubMed  Google Scholar 

  2. Peter ME (2011) Programmed cell death: apoptosis meets necrosis. Nature 471:310–312

    Article  CAS  PubMed  Google Scholar 

  3. Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harb Perspect Biol 7: a006080

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257 Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shen HM, Codogno P (2011) Autophagic cell death: Loch Ness monster or endangered species? Autophagy 7:457–465

    Article  CAS  PubMed  Google Scholar 

  7. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ et al (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yuan J, Kroemer G (2010) Alternative cell death mechanisms in development and beyond. Genes Dev 24:2592–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Green DR, Evan GI (2002) A matter of life and death. Cancer Cell 1:19–30 Review

    Article  CAS  PubMed  Google Scholar 

  10. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–129

    Article  CAS  PubMed  Google Scholar 

  11. Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97-107

    PubMed  Google Scholar 

  12. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 12:1–222

    Article  PubMed  PubMed Central  Google Scholar 

  13. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Investig 115:2679–2688 Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo X, Dong Y, Yin S, Zhao C, Huo Y, Fan L et al (2013) Patulin induces pro-survival functions via autophagy inhibition and p62 accumulation. Cell Death Dis 4:e822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin S, Guo X, Li J, Fan L, Hu H (2016) Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells. Arch Toxicol 90:985–996

    Article  CAS  PubMed  Google Scholar 

  16. Kanduc D, Mittelman A, Serpico R, Sinigaglia E, Sinha AA, Natale C et al (2002) Cell death: apoptosis versus necrosis (review). Int J Oncol 21:165–170

    CAS  PubMed  Google Scholar 

  17. Kaiser WJ1, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ et al (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288:31268–31279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665

    Article  CAS  PubMed  Google Scholar 

  19. Wallach D, Kang TB, Dillon CP, Green DR (2016) Programmed necrosis in inflammation: toward identification of the effector molecules. Science 352:aaf2154

    Article  PubMed  Google Scholar 

  20. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254

    Article  CAS  PubMed  Google Scholar 

  21. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16:139–144 Review

    Article  CAS  PubMed  Google Scholar 

  23. Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539

    Article  CAS  PubMed  Google Scholar 

  24. Yuan J, Najafov A, Py BF (2016) Roles of caspases in necrotic cell death. Cell 167:1693–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002 Review

    Article  CAS  PubMed  Google Scholar 

  26. Rayet B, Gélinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947

    Article  CAS  PubMed  Google Scholar 

  27. Katsuragi Y, Ichimura Y, Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282:4672–4678

    Article  CAS  PubMed  Google Scholar 

  28. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223

    CAS  PubMed  Google Scholar 

  29. Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A et al (2011) p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 44:134–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Linares JF, Duran A, Yajima T, Pasparakis M, Moscat J, Diaz-Meco MT (2013) K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol Cell 51:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moscat J, Diaz-Meco MT (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137:1001–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Komatsu M, Kageyama S, Ichimura Y (2012) p62/SQSTM1/A170: physiology and pathology. Pharmacol Res 66:457–462

    Article  CAS  PubMed  Google Scholar 

  33. Moscat J, Diaz-Meco MT (2012) p62: a versatile multitasker takes on cancer. Trends Biochem Sci 37:230–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Manley S, Williams JA, Ding WX (2013) Role of p62/SQSTM1 in liver physiology and pathogenesis. Exp Biol Med (Maywood) 238:525–538

    Article  Google Scholar 

  35. Moscat J, Diaz-Meco MT, Wooten MW (2007) Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 32:95–100

    Article  CAS  PubMed  Google Scholar 

  36. Ni HM, McGill MR, Chao X, Du K, Williams JA, Xie Y et al (2016) Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice. J Hepatol 65:354–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT et al (2008) The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13:343–354

    Article  CAS  PubMed  Google Scholar 

  38. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O et al (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193:275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Umemura A, He F, Taniguchi K, Nakagawa H, Yamachika S, Font-Burgada J et al (2016) p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 29:935–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Orvedahl A, MacPherson S, Sumpter R Jr, Tallóczy Z, Zou Z, Levine B (2010) Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7:115–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR et al (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137:721–735

    Article  CAS  PubMed  Google Scholar 

  42. Ullman E, Pan JA, Zong WX (2011) Squamous cell carcinoma antigen 1 promotes caspase-8-mediated apoptosis in response to endoplasmic reticulum stress while inhibiting necrosis induced by lysosomal injury. Mol Cell Biol 31:2902–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang YB, Gong JL, Xing TY, Zheng SP, Ding W (2013) Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells. Cell Death Dis 4:e550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang S, Okamoto K, Yu C, Sinicrope FA (2013) p62/sequestosome-1 up-regulation promotes ABT-263-induced caspase-8 aggregation/activation on the autophagosome. J Biol Chem 288:33654–33666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeng RX, Zhang YB, Fan Y, Wu GL (2014) p62/SQSTM1 is involved in caspase-8 associated cell death induced by proteasome inhibitor MG132 in U87MG cells. Cell Biol Int 38:1221–1226

    Article  CAS  PubMed  Google Scholar 

  46. Ji LL, Sheng YC, Zheng ZY, Shi L, Wang ZT (2015) The involvement of p62-Keap1-Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity. Free Radic Biol Med 85:12–23

    Article  CAS  PubMed  Google Scholar 

  47. Song X, Yin S, Huo Y, Liang M, Fan L, Ye M et al (2015) Glycycoumarin ameliorates alcohol-induced hepatotoxicity via activation of Nrf2 and autophagy. Free Radic Biol Med 89:135–146

    Article  CAS  PubMed  Google Scholar 

  48. Lee DH, Park JS, Lee YS, Sung SH, Lee YH, Bae SH (2016) The hypertension drug Verapamil activates Nrf2 by promoting p62-dependent autophagic Keap1 degradation and prevents acetaminophen-induced cytotoxicity. BMB Rep 50(2):91–96

    Article  CAS  Google Scholar 

  49. Valencia T, Kim JY, Abu-Baker S, Moscat-Pardos J, Ahn CS, Reina-Campos M et al (2014) Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26:121–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Inoue D, Suzuki T, Mitsuishi Y, Miki Y, Suzuki S, Sugawara S et al (2012) Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci 103(4):760–766

    Article  CAS  PubMed  Google Scholar 

  51. Duran A, Hernandez ED, Reina-Campos M, Castilla EA, Subramaniam S, Raghunandan S et al (2016) p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell 30:595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moscat J, Karin M, Diaz-Meco MT (2016) p62 in cancer: signaling adaptor beyond autophagy. Cell 167:606–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W (2016) The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment. Pharmacol Rep 69:393–402

    Article  PubMed  Google Scholar 

  54. Lamlé J, Marhenke S, Borlak J, von Wasielewski R, Eriksson CJ, Geffers R et al (2008) Nuclear factor-eythroid 2-related factor 2 prevents alcohol-induced fulminant liver injury. Gastroenterology 134:1159–1168

    Article  PubMed  Google Scholar 

  55. Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T, O’Connor T et al (2001) High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 59:169–177

    Article  CAS  PubMed  Google Scholar 

  56. Chan K, Han XD, Kan YW (2001) An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci USA 98:4611–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cavin C, Delatour T, Marin-Kuan M, Holzhäuser D, Higgins L, Bezençon C et al (2007) Reduction in antioxidant defenses may contribute to ochratoxin A toxicity and carcinogenicity. Toxicol Sci 96:30–39

    Article  CAS  PubMed  Google Scholar 

  58. Deramaudt TB, Dill C, Bonay M (2013) Regulation of oxidative stress by Nrf2 in the pathophysiology of infectious diseases. Med Mal Infect 43:100–107

    Article  CAS  PubMed  Google Scholar 

  59. Itoh K, Mimura J, Yamamoto M (2010) Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid Redox Signal 13:1665–1678

    Article  CAS  PubMed  Google Scholar 

  60. Jiang T, Harder B, Rojo de la Vega M, Wong PK, Chapman E, Zhang DD (2015) p62 links autophagy and Nrf2 signaling. Free Radic Biol Med 88:199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T et al (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30:3275–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jain A, Lamark T, Sjøttem E, Larsen KB, Awuh JA, Øvervatn A et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576–22591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13:374–384 (Review)

    Article  CAS  PubMed  Google Scholar 

  64. Ozcan L, Tabas I (2012) Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 63:317–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Investig 115:2656–2664 (Review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    Article  CAS  PubMed  Google Scholar 

  67. Yu H, Su J, Xu Y, Kang J, Li H, Zhang L et al (2011) p62/SQSTM1 involved in cisplatin resistance in human ovarian cancer cells by clearing ubiquitinated proteins. Eur J Cancer 47:1585–1594

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Q, Lenardo MJ, Baltimore D (2017) 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168:37–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Israël A (2010) The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2:a000158

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chiao PJ, Na R, Niu J, Sclabas GM, Dong Q, Curley SA (2002) Role of Rel/NF-kappaB transcription factors in apoptosis of human hepatocellular carcinoma cells. Cancer 95:1696–1705

    Article  CAS  PubMed  Google Scholar 

  71. Sanz L, Sanchez P, Lallena MJ, Diaz-Meco MT, Moscat J (1999) The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J 18:3044–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J 19:1576–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT, Moscat J (2005) The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem 280:35625–35629

    Article  CAS  PubMed  Google Scholar 

  74. Zotti T, Scudiero I, Settembre P, Ferravante A, Mazzone P, D’Andrea L et al (2014) RAF6-mediated ubiquitination of NEMO requires p62/sequestosome-1. Mol Immunol 58:27–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Paul S, Traver MK, Kashyap AK, Washington MA, Latoche JR, Schaefer BC (2014) T cell receptor signals to NF-κB are transmitted by a cytosolic p62-Bcl10-Malt1-IKK signalosome. Sci Signal 7:ra45

    Article  PubMed  Google Scholar 

  76. Pankiv S, Lamark T, Bruun JA, Øvervatn A, Bjørkøy G, Johansen T (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285(8):5941–5953

    Article  CAS  PubMed  Google Scholar 

  77. Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma K et al (2016) Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol Cell 63:34–48

    Article  CAS  PubMed  Google Scholar 

  78. Hewitt G, Carroll B, Sarallah R, Correia-Melo C, Ogrodnik M, Nelson G et al (2016) SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy 12(10):1917–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vessoni AT, Filippi-Chiela EC, Menck CF, Lenz G (2013) Autophagy and genomic integrity. Cell Death Differ 20(11):1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hewitt G, Korolchuk VI (2017) Repair, reuse, recycle: the expanding role of autophagy in genome maintenance. Trends Cell Biol 27(5):340–351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (NSFC, 31371752 and 31671945). We thank Professor Douglas G. Mashek for his editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Hu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Yin, S., Zhang, E. et al. Role of p62 in the regulation of cell death induction. Apoptosis 23, 187–193 (2018). https://doi.org/10.1007/s10495-018-1445-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-018-1445-z

Keywords

Navigation