Skip to main content
Log in

The aged-related increase in xanthine oxidase expression and activity in several tissues from mice is not shown in long-lived animals

  • Research Paper
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Xanthine oxidase (XO) is an important source of oxidant production and plays an essential role in several oxidative stress-related diseases. Aging is associated with a progressive deregulation of homeostasis as a result of a chronic oxidative stress situation. In the present work the age-related changes in XO expression and activity, as well as the activities of superoxide dismutase and catalase have been investigated in liver, kidney and thymus from four different age groups of mice, including long-lived animals. Furthermore, we have evaluated the contribution of the XO to the oxidative stress-associated with aging, in comparison to another enzymatic key source of oxidant generation, the NADPH oxidase, in peritoneal leukocytes from old mice. In all the tissues analyzed, the old mice showed higher activity and expression of XO, and decreased or unchanged superoxide dismutase and catalase activities as compared with adult mice. Moreover, the inhibition of reactive oxygen species with allopurinol or apocynin in peritoneal leukocytes from old mice, suggest that both XO and NADPH oxidase contribute to the generation of superoxide anion, whereas the XO may have a special relevance in the production of hydrogen peroxyde. Finally, long-lived animals showed a well-preserved redox state, in terms of antioxidant defenses and oxidant compounds in tissues and immune cells, which may be related to the ability of these subjects to reach a very advanced age in healthy condition. These results confirm that XO plays an important role in the age-related oxidative stress in tissues and immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. In: Packer L (ed) Methods in enzymology, vol 105. Academic Press, Orland, pp 121–126

    Google Scholar 

  • Alonso-Fernández P, De la Fuente M (2011) Role of the immune system in aging and longevity. Curr Aging Sci 4(2):78–100

    PubMed  Google Scholar 

  • Alonso-Fernandez P, Puerto M, Maté I, Ribera JM, De la Fuente M (2008) Neutrophils of centenarians show function levels similar to those of young adults. J Am Geriatrics Soc 56:2244–2251

    Article  Google Scholar 

  • Alvarado C, Álvarez P, Jiménez L, De la Fuente M (2006) Oxidative stress in leukocytes from young prematurely aging mice is reversed by supplementation with biscuits rich in antioxidants. Dev Comp Immunol 30:1168–1180

    Article  PubMed  CAS  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Aranda R, Doménech E, Rus AD et al (2007) Age-related increase in xanthine oxidase activity in human plasma and rat tissues. Free Radic Res 41(11):1995–2000

    Article  Google Scholar 

  • Arranz L, Caamaño JH, Lord JM, De la Fuente M (2010a) Preserved immune functions and controlled leukocyte oxidative stress in naturally long-lived mice: possible role of nuclear factor kappa β. J Gerontol A Biol Sci Med Sci 65A(9):941–950

    Article  CAS  Google Scholar 

  • Arranz L, Lord JM, De la Fuente M (2010b) Preserved ex vivo inflammatory status and cytokine responses in naturally long-lived mice. Age 32:451–466

    Article  PubMed  CAS  Google Scholar 

  • Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600

    Article  PubMed  CAS  Google Scholar 

  • Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanism and pathophysiological implications. J Physiol 555:589–606

    Article  PubMed  CAS  Google Scholar 

  • Cand F, Verdetti J (2003) Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation in the major organs of the aging rats. Free Rad Bio Med 7(1):59–63

    Article  Google Scholar 

  • Cejková J, Vejrazka M, Pláteník J, Stípek S (2004) Age-related changes in superoxide dismutase, glutathione peroxidase, catalase and xanthine oxidoreductase/xanthine oxidase activities in the rabbit cornea. Exp Gerontol 39:1537–1543

    Article  PubMed  Google Scholar 

  • Chung HY, Song SH et al (1999) Modulation of renal xanthine oxidoreductase in aging: gene expression and reactive oxygen species generation. J Nutr Health Aging 3:19–23

    PubMed  CAS  Google Scholar 

  • De la Fuente M (1985) Changes in the macrophage function with aging. Comp Biochem Physiol A Comp Physiol 1(4):935–938

    Google Scholar 

  • De la Fuente M (2008) Role of neuroimmunomodulation in aging. Neuroimmunomodulation 15:213–223

    Article  PubMed  Google Scholar 

  • De la Fuente M (2010) Murine models of premature ageing for the study of diet-induced immune changes: improvement of leukocyte functions in two strains of old prematurely ageing mice by dietary supplementation with sulphur-containing antioxidants. Proc Nutr Soc 69:651–659

    Article  PubMed  Google Scholar 

  • De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15:3003–3026

    Article  PubMed  Google Scholar 

  • Del Maestro RF, McDonald W, Anderson R (1983) Superoxide dismutase, catalase and glutathione peroxidase in experimental and human brain tumours in oxy radicals and their scavenger systems. In: Greenwald R, Cohen G (eds) Oxy radicals and their scavenger systems. Elsevier, New York, pp 28–35

    Google Scholar 

  • Desco M, Asensi M, Márquez R et al (2002) Xanthine oxidase is involved in free radical production in type 1 diabetes, protection by allopurinol. Diabetes 1(4):1118–1124

    Article  Google Scholar 

  • Elahi MM, Kong YX, Matata BM (2009) Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev 2(5):259–269

    Article  PubMed  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    Article  PubMed  CAS  Google Scholar 

  • Guayerbas N, Puerto M, Víctor VM, Miquel J, De la Fuente M (2002) Leukocyte function and life span in a murine model of premature immunosenescence. Exp Gerontol 37:249–256

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  PubMed  CAS  Google Scholar 

  • Hansson RO, Jonson O, Lundstam S (1983) Effects of free radicals scavengers on renal circulation after ischemia in the rabbit. Clin Sci 65:605–610

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radicals and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  • Harris ED (1992) Regulation of antioxidant enzymes. FASEB J 6:2675–2683

    PubMed  CAS  Google Scholar 

  • Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we know? Free Radic Biol Med 6(33):774–796

    Article  Google Scholar 

  • Harrison R (2004) Physiological roles of xanthine oxidoreductase. Drug Metab Rev 36(2):363–375

    Article  PubMed  CAS  Google Scholar 

  • Hassoun PM, Yu FS, Shedd AL et al (1986) Regulation of endothelial cell xanthine dehydrogenase/xanthine oxidase gene expression by oxygen tension. Am J Physiol Lung Cell Mol Physiol 266:L163–L171

    Google Scholar 

  • Hearse DJ, Manning AS, Downey JM (1986) Liver xanthine oxidase, critical mediator of myocardial injury during ischemia and reperfusion. Acta Physiol Scand 97:100–104

    Google Scholar 

  • Jacobson A, Yan C, Gao Q, Rincon-Skinner T, Rivera A, Edwards J, Huang A, Kaley G, Sun D (2007) Aging enhances pressure-induced arterial superoxide formation. Am J Physiol Heart Circ Physiol 293:H1344–H1350

    Article  PubMed  CAS  Google Scholar 

  • Kasapoglu M, Ozben T (2001) Alterations on antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol 36:209–220

    Article  PubMed  CAS  Google Scholar 

  • Kelley EE, Khoo KH, Hundley NJ et al (2010) Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med 48:493–498

    Article  PubMed  CAS  Google Scholar 

  • Komaki Y, Sugiura H, Koarai A et al (2005) Cytokine-mediated xanthine oxidase upregulation in chronic obstructive pulmonary disease’s airways. Pulmonary Pharm Therap 18:297–302

    Article  CAS  Google Scholar 

  • Kurosaki M, Calzi ML, Scanziani E, Garttini E, Terao M (1994) Tissue and cell specific expression of mouse xanthine oxidoreductase gene in vivo: regulation by bacterial lipopolysaccharide. Biochem J 306:225–234

    Google Scholar 

  • Liscovsky MV, Ranocchia RP, Alignani DO, Gorlino CV, Morón G, Maletto BA, Pistoresi-Palencia MC (2011) CpG-ODN+IFN-γ confer pro- and anti-inflammatory properties to peritoneal macrophages in aged mice. Exp Gerontol. doi:10.1016/j.exger.2011.01.006.

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  PubMed  CAS  Google Scholar 

  • Martin H, Hancock J, Salisbury V, Harrison R (2004) Role of xanthine oxidoreductase as an antimicrobial agent. Infec Immun 72(9):4933–4939

    Article  CAS  Google Scholar 

  • Newaz MA, Yousefipuour Z, Oyekan A (2006) Oxidative stress-associated vascular aging is xanthine oxidase-dependent but not NAD(P)H oxidase-dependent. J Cardiovasc Pharmacol 48:88–94

    Article  PubMed  CAS  Google Scholar 

  • Parks DA, Granger DN (1986) Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl 548:87–99

    PubMed  CAS  Google Scholar 

  • Parks DA, Skinner KA, Skinner HB, Tan S (1998) Multiple organ dysfunction syndrome: role of xanthine oxidase and nitric oxide. Pathophysiology 5:49–66

    Article  CAS  Google Scholar 

  • Posadas SJ, Caz V, Largo C et al (2009) Protective effect of supercritical fluid rosemary extract, Rosmarinus officinalis, on antioxidants of major organs of aged rats. Exp Gerontol 44(6–7):383–389

    Article  PubMed  CAS  Google Scholar 

  • Puerto M, Guayerbas G, Víctor VM, De la Fuente (2002) Effects of N-acetylcysteine on macrophage and lymphocyte functions in a mouse model of premature ageing. Pharmacol Biochem Behav 73:797–804

    Article  PubMed  CAS  Google Scholar 

  • Salmon AB, Richardson A, Pérez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or health aging? Free Rad Biol Med 48:642–655

    Article  PubMed  CAS  Google Scholar 

  • Sastre J, Pallardó FV, Viña J (2003) The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 35:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sobocanee S, Balog T, Kusic B (2008) Differential response to lipid peroxidation in male and female mice with age: correlation of antioxidant enzymes matters. Biogerontology 9:335–343

    Article  Google Scholar 

  • Tian L, Cai Q, Wey H (1998) Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic Biol Med 24(9):1477–1484

    Article  PubMed  CAS  Google Scholar 

  • Tripathi P, Chandra M, Misra MK (2009) Oral administration of l-arginine in patients with angina or following myocardial infection may be protective by increasing plasma superoxide dismutase and total thiols with reduction in serum cholesterol and xanthine oxidase. Oxi Med Cell Longev 2(4):231–237

    Article  Google Scholar 

  • Vida C, De Castro NM, Corpas I, De la Fuente M, González E (2009) Changes in xanthine oxidase activity and lipid peroxidation levels in prematurely aging mice. Acta Physiol 195(667):100–101

    Google Scholar 

  • Viña J, Gimeno A, Sastre J et al (2000) Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB Life 49(6):539–544

    Article  PubMed  Google Scholar 

  • Viveros MP, Arranz L, Hernanz A, Miquel J, De la Fuente M (2007) A model of premature aging mice based on altered stress-related behaviorial response and immunosenescence. Neuroimmunomodulation 14:157–162

    Article  PubMed  CAS  Google Scholar 

  • Vorbach C, Harrison R, Capecchi MR (2003) Xanthine oxidoreductase is central to the evolution and function of the innate immune sytem. TRENDs in immunology 24:512–517

    Article  PubMed  CAS  Google Scholar 

  • Zmijewsky JW et al (2009) Antiinflammatory effects of hydrogen peroxide in neutrophil activation and acute lung injury. Am J Respir Crit Care Med 179:694–704

    Article  Google Scholar 

  • Zweier JL, Kuppusamy P, Gerard AL (1988) Measurement of endothelial cell free radical generation, evidence for a central mechanism of free radical injury in ischemia. Proc Natl Acad Sci USA 88:4046–4050

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Science and Innovation (BFU2008-04336), the Ministry of Health and Consumption (RETICEF, RD06/0013/003) of Spain, and the Research Group of Complutense University of Madrid (910379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vida, C., Rodríguez-Terés, S., Heras, V. et al. The aged-related increase in xanthine oxidase expression and activity in several tissues from mice is not shown in long-lived animals. Biogerontology 12, 551–564 (2011). https://doi.org/10.1007/s10522-011-9351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-011-9351-6

Keywords

Navigation