Skip to main content

Advertisement

Log in

Cadmium and cardiovascular diseases: cell biology, pathophysiology, and epidemiological relevance

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Today cardiovascular diseases (CVDs) are the killer number one world wide. In 2004 an estimated 17.1 million people died due to CVDs and this number will further increase to an estimated 23.6 million by 2030. Importantly, currently known risk factors, like hypertension, and hypercholesterolemia, can only be made responsible for about 50–75% of all CVDs, highlighting the urgent need to search for and define new CVD risk factors. Cadmium (Cd) was shown to have the potential to serve as one such novel risk factor, as it was demonstrated—in vitro, in animal studies, and in human studies—that Cd causes atherosclerosis (the basis of most CVDs). Herein, we discuss the molecular and cellular biological effects of Cd in the cardiovascular system; we present concepts on the pathophysiology of Cd-caused atherosclerosis, and provide data that indicate an epidemiological relevance of Cd as a risk factor for CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abouhamed M, Wolff NA, Lee WK et al (2007) Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells. Am J Physiol Renal Physiol 293:F705–F712

    Article  PubMed  Google Scholar 

  • Abu-Hayyeh S, Sian M, Jones KG et al (2001) Cadmium accumulation in aortas of smokers. Arterioscler Thromb Vasc Biol 21:863–867

    PubMed  Google Scholar 

  • Agrawal A, Bhattacharya S (1989) Appearance of C-reactive protein (CRP) in serum and liver cytosol of cadmium-treated rats. Indian J Exp Biol 27:1024–1027

    PubMed  Google Scholar 

  • Alsberg C, Schwartze S (1919) Pharmacological action of cadmium. J Pharmacol Exp Ther

  • Bernhard D, Rossmann A, Wick G (2005) Metals in cigarette smoke. IUBMB Life 57:805–809

    Article  PubMed  Google Scholar 

  • Bernhard D, Rossmann A, Henderson B et al (2006) Increased serum cadmium and strontium levels in young smokers: effects on arterial endothelial cell gene transcription. Arterioscler Thromb Vasc Biol 26:833–838

    Article  PubMed  Google Scholar 

  • Bhatnagar A (2006) Environmental cardiology: studying mechanistic links between pollution and heart disease. Circ Res 99:692–705

    Article  PubMed  Google Scholar 

  • Carraway MS, Suliman HB, Madden MC et al (2006) Metabolic capacity regulates iron homeostasis in endothelial cells. Free Radic Biol Med 41:1662–1669

    Article  PubMed  Google Scholar 

  • Crowther MA (2005) Pathogenesis of atherosclerosis. Hematology Am Soc Hematol Educ Prog 436–441

  • DiFrancesco D, Ferroni A, Visentin S et al (1985) Cadmium-induced blockade of the cardiac fast Na channels in calf Purkinje fibres. Proc R Soc Lond B Biol Sci 223:475–484

    Article  PubMed  Google Scholar 

  • Dong Z, Wang L, Xu J et al (2009) Promotion of autophagy and inhibition of apoptosis by low concentrations of cadmium in vascular endothelial cells. Toxicol In Vitro 23:105–110

    Article  PubMed  Google Scholar 

  • Erfurt C, Roussa E, Thevenod F (2003) Apoptosis by Cd2+ or CdMT in proximal tubule cells: different uptake routes and permissive role of endo/lysosomal CdMT uptake. Am J Physiol Cell Physiol 285:C1367–C1376

    PubMed  Google Scholar 

  • Eum KD, Lee MS, Paek D (2008) Cadmium in blood and hypertension. Sci Total Environ 407:147–153

    Article  PubMed  Google Scholar 

  • Follmer CH, Lodge NJ, Cullinan CA et al (1992) Modulation of the delayed rectifier, IK, by cadmium in cat ventricular myocytes. Am J Physiol 262:C75–C83

    PubMed  Google Scholar 

  • Fujiwara Y, Watanabe S, Kaji T (1998) Promotion of cultured vascular smooth muscle cell proliferation by low levels of cadmium. Toxicol Lett 94:175–180

    Article  PubMed  Google Scholar 

  • Fujiwara Y, Kitagawa T, Shinkai Y et al (2009) Cilostazol induces metallothionein expression in vascular cells. Yakugaku Zasshi 129:1415–1422

    Article  PubMed  Google Scholar 

  • Garlanda C, Dejana E (1997) Heterogeneity of endothelial cells. Specific markers. Arterioscler Thromb Vasc Biol 17:1193–1202

    PubMed  Google Scholar 

  • Gosselet F, Candela P, Sevin E et al (2009) Transcriptional profiles of receptors and transporters involved in brain cholesterol homeostasis at the blood-brain barrier: use of an in vitro model. Brain Res 1249:34–42

    Article  PubMed  Google Scholar 

  • Hanke H, Lenz C, Finking G (2001) The discovery of the pathophysiological aspects of atherosclerosis—a review. Acta Chir Belg 101:162–169

    PubMed  Google Scholar 

  • He L, Wang B, Hay EB et al (2009) Discovery of ZIP transporters that participate in cadmium damage to testis and kidney. Toxicol Appl Pharmacol 238:250–257

    Article  PubMed  Google Scholar 

  • Houtman JP (1993) Prolonged low-level cadmium intake and atherosclerosis. Sci Total Environ 138:31–36

    Article  PubMed  Google Scholar 

  • Jamall IS, Naik M, Sprowls JJ et al (1989) A comparison of the effects of dietary cadmium on heart and kidney antioxidant enzymes: evidence for the greater vulnerability of the heart to cadmium toxicity. J Appl Toxicol 9:339–345

    Article  PubMed  Google Scholar 

  • Jung YS, Jeong EM, Park EK et al (2008) Cadmium induces apoptotic cell death through p38 MAPK in brain microvessel endothelial cells. Eur J Pharmacol 578:11–18

    Article  PubMed  Google Scholar 

  • Kadar A, Glasz T (2001) Development of atherosclerosis and plaque biology. Cardiovasc Surg 9:109–121

    Article  PubMed  Google Scholar 

  • Kaji T (2004) Cell biology of heavy metal toxicity in vascular tissue. Yakugaku Zasshi 124:113–120

    Article  PubMed  Google Scholar 

  • Kaji T, Mishima A, Koyanagi E et al (1992) Possible mechanism for zinc protection against cadmium cytotoxicity in cultured vascular endothelial cells. Toxicology 76:257–270

    Article  PubMed  Google Scholar 

  • Kaji T, Mishima A, Yamamoto C et al (1993a) Zinc protection against cadmium-induced destruction of the monolayer of cultured vascular endothelial cells. Toxicol Lett 66:247–255

    Article  PubMed  Google Scholar 

  • Kaji T, Yamamoto C, Tsubaki S et al (1993b) Metallothionein induction by cadmium, cytokines, thrombin and endothelin-1 in cultured vascular endothelial cells. Life Sci 53:1185–1191

    Article  PubMed  Google Scholar 

  • Kaji T, Mishima A, Yamamoto C et al (1996) Bismuth induces metallothionein but does not protect against cadmium cytotoxicity in cultured vascular endothelial cells. Bull Environ Contam Toxicol 56:630–634

    Article  PubMed  Google Scholar 

  • Kara H, Karatas F, Canatan H et al (2005) Effects of exogenous metallothionein on acute cadmium toxicity in rats. Biol Trace Elem Res 104:223–232

    Article  PubMed  Google Scholar 

  • Kisling GM, Kopp SJ, Paulson DJ et al (1993) Cadmium-induced attenuation of coronary blood flow in the perfused rat heart. Toxicol Appl Pharmacol 118:58–64

    Article  PubMed  Google Scholar 

  • Knoflach M, Kiechl S, Penz D et al (2009) Cardiovascular risk factors and atherosclerosis in young women: atherosclerosis risk factors in female youngsters (ARFY study). Stroke 40:1063–1069

    Article  PubMed  Google Scholar 

  • Kolakowski J, Baranski B, Opalska B (1983) Effect of long-term inhalation exposure to cadmium oxide fumes on cardiac muscle ultrastructure in rats. Toxicol Lett 19:273–278

    Article  PubMed  Google Scholar 

  • Kundu S, Sengupta S, Chatterjee S et al (2009) Cadmium induces lung inflammation independent of lung cell proliferation: a molecular approach. J Inflamm (Lond) 6:19

    Article  Google Scholar 

  • Kyselovic J, Martinka P, Batova Z et al (2005) Calcium channel blocker inhibits Western-type diet-evoked atherosclerosis development in ApoE-deficient mice. J Pharmacol Exp Ther 315:320–328

    Article  PubMed  Google Scholar 

  • Lag M, Westly S, Lerstad T et al (2002) Cadmium-induced apoptosis of primary epithelial lung cells: involvement of Bax and p53, but not of oxidative stress. Cell Biol Toxicol 18:29–42

    Article  PubMed  Google Scholar 

  • Lee WK, Thevenod F (2008) Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies. Biochem Pharmacol 76:1323–1332

    Article  PubMed  Google Scholar 

  • Lepeshkevich SV, Dzhagarov BM (2009) Effect of zinc and cadmium ions on structure and function of myoglobin. Biochim Biophys Acta 1794:103–109

    PubMed  Google Scholar 

  • Liu F, Jan KY (2000) DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells. Free Radic Biol Med 28:55–63

    Article  PubMed  Google Scholar 

  • Majumder S, Muley A, Kolluru GK et al (2008) Cadmium reduces nitric oxide production by impairing phosphorylation of endothelial nitric oxide synthase. Biochem Cell Biol 86:1–10

    Article  PubMed  Google Scholar 

  • Mallika V, Goswami B, Rajappa M (2007) Atherosclerosis pathophysiology and the role of novel risk factors: a clinicobiochemical perspective. Angiology 58:513–522

    Article  PubMed  Google Scholar 

  • Martynowicz H, Skoczynska A, Wojakowska A et al (2004) Serum vasoactive agents in rats poisoned with cadmium. Int J Occup Med Environ Health 17:479–485

    PubMed  Google Scholar 

  • Messner B, Knoflach M, Seubert A et al (2009) Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance. Arterioscler Thromb Vasc Biol 29:1392–1398

    Article  PubMed  Google Scholar 

  • Miller KA, Siscovick DS, Sheppard L et al (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 356:447–458

    Article  PubMed  Google Scholar 

  • Mlynek V, Skoczynska A (2005) The proinflammatory activity of cadmium. Postepy Hig Med Dosw (Online) 59:1–8

    Google Scholar 

  • Moll UM, Wolff S, Speidel D et al (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–636

    Article  PubMed  Google Scholar 

  • Nakagawa H, Nishijo M (1996) Environmental cadmium exposure, hypertension and cardiovascular risk. J Cardiovasc Risk 3:11–17

    Article  PubMed  Google Scholar 

  • Navas-Acien A, Silbergeld EK, Sharrett R et al (2005) Metals in urine and peripheral arterial disease. Environ Health Perspect 113:164–169

    Article  PubMed  Google Scholar 

  • Ozturk IM, Buyukakilli B, Balli E et al (2009) Determination of acute and chronic effects of cadmium on the cardiovascular system of rats. Toxicol Mech Methods 19:308–317

    Article  PubMed  Google Scholar 

  • Park SL, Kim YM, Ahn JH et al (2009) Cadmium stimulates the expression of vascular cell adhesion molecule-1 (VCAM-1) via p38 mitogen-activated protein kinase (MAPK) and JNK activation in cerebrovascular endothelial cells. J Pharmacol Sci 110:405–409

    Article  PubMed  Google Scholar 

  • Pearce LL, Wasserloos K, St Croix CM et al (2000) Metallothionein, nitric oxide and zinc homeostasis in vascular endothelial cells. J Nutr 130:1467S–1470S

    PubMed  Google Scholar 

  • Pearson CA, Lamar PC, Prozialeck WC (2003) Effects of cadmium on E-cadherin and VE-cadherin in mouse lung. Life Sci 72:1303–1320

    Article  PubMed  Google Scholar 

  • Peters JL, Perlstein TS, Perry MJ et al (2010) Cadmium exposure in association with history of stroke and heart failure. Environ Res

  • Plusquin M, Nawrot TS, Staessen JA (2005) Peripheral arterial disease and metals in urine and blood. Environ Health Perspect 113:A510–A511; author reply A511

    Article  PubMed  Google Scholar 

  • Prentice RC, Hawley PL, Glonek T et al (1984) Calcium-dependent effects of cadmium on energy metabolism and function of perfused rat heart. Toxicol Appl Pharmacol 75:198–210

    Article  PubMed  Google Scholar 

  • Prozialeck WC, Edwards JR, Woods JM (2006) The vascular endothelium as a target of cadmium toxicity. Life Sci 79:1493–1506

    Article  PubMed  Google Scholar 

  • Prozialeck WC, Edwards JR, Nebert DW et al (2008) The vascular system as a target of metal toxicity. Toxicol Sci 102:207–218

    Article  PubMed  Google Scholar 

  • Rogalska J, Brzoska MM, Roszczenko A et al (2009) Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact 177:142–152

    Article  PubMed  Google Scholar 

  • Ross R (1995) Cell biology of atherosclerosis. Annu Rev Physiol 57:791–804

    Article  PubMed  Google Scholar 

  • Ross R (1997) Cellular and molecular studies of atherogenesis. Atherosclerosis 131(Suppl):S3–S4

    Article  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  Google Scholar 

  • Ross R, Glomset JA (1973) Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180:1332–1339

    Article  PubMed  Google Scholar 

  • Sacerdote FL, Cavicchia JC (1983) Ultrastructural effects of cadmium on the rat epididymis. Int J Androl 6:533–540

    Article  PubMed  Google Scholar 

  • Sarkar S, Yadav P, Trivedi R et al (1995) Cadmium-induced lipid peroxidation and the status of the antioxidant system in rat tissues. J Trace Elem Med Biol 9:144–149

    PubMed  Google Scholar 

  • Schutte R, Nawrot T, Richart T et al (2008) Arterial structure and function and environmental exposure to cadmium. Occup Environ Med 65:412–419

    Article  PubMed  Google Scholar 

  • Shen JB, Jiang B, Pappano AJ (2000) Comparison of L-type calcium channel blockade by nifedipine and/or cadmium in guinea pig ventricular myocytes. J Pharmacol Exp Ther 294:562–570

    PubMed  Google Scholar 

  • Shukla A, Shukla GS, Srimal RC (1996) Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol 15:400–405

    Article  PubMed  Google Scholar 

  • Simovich MJ, Conrad ME, Umbreit JN et al (2002) Cellular location of proteins related to iron absorption and transport. Am J Hematol 69:164–170

    Article  PubMed  Google Scholar 

  • Skalen K, Gustafsson M, Rydberg EK et al (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417:750–754

    Article  PubMed  Google Scholar 

  • Steffensen IL, Mesna OJ, Andruchow E et al (1994) Cytotoxicity and accumulation of Hg, Ag, Cd, Cu, Pb and Zn in human peripheral T and B lymphocytes and monocytes in vitro. Gen Pharmacol 25:1621–1633

    PubMed  Google Scholar 

  • Subramanyam G, Bhaskar M, Govindappa S (1992) The role of cadmium in induction of atherosclerosis in rabbits. Indian Heart J 44:177–180

    PubMed  Google Scholar 

  • Szuster-Ciesielska A, Lokaj I, Kandefer-Szerszen M (2000a) The influence of cadmium and zinc ions on the interferon and tumor necrosis factor production in bovine aorta endothelial cells. Toxicology 145:135–145

    Article  PubMed  Google Scholar 

  • Szuster-Ciesielska A, Stachura A, Slotwinska M et al (2000b) The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology 145:159–171

    Article  PubMed  Google Scholar 

  • Tedgui A, Mallat Z (2001) Apoptosis as a determinant of atherothrombosis. Thromb Haemost 86:420–426

    PubMed  Google Scholar 

  • Teleman O, Drakenberg T, Forsen S et al (1983) Calcium and cadmium binding to troponin C. Evidence for cooperativity. Eur J Biochem 134:453–457

    Article  PubMed  Google Scholar 

  • Tellez-Plaza M, Navas-Acien A, Crainiceanu CM et al (2008) Cadmium exposure and hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). Environ Health Perspect 116:51–56

    Article  PubMed  Google Scholar 

  • Tomera JF, Lilford K, Kukulka SP et al (1994) Divalent cations in hypertension with implications to heart disease: calcium, cadmium interactions. Methods Find Exp Clin Pharmacol 16:97–107

    PubMed  Google Scholar 

  • Wang Y, Fang J, Leonard SS et al (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443

    Article  PubMed  Google Scholar 

  • Wang SH, Shih YL, Kuo TC et al (2009a) Cadmium toxicity toward autophagy through ROS-activated GSK-3beta in mesangial cells. Toxicol Sci 108:124–131

    Article  PubMed  Google Scholar 

  • Wang SH, Shih YL, Lee CC et al (2009b) The role of endoplasmic reticulum in cadmium-induced mesangial cell apoptosis. Chem Biol Interact 181:45–51

    Article  PubMed  Google Scholar 

  • WHO (2009) Cardiovascular diseases (CVDs). In: WHO (ed). Fact sheet N 317. WHO

  • Wolf MB, Baynes JW (2007) Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals 20:73–81

    Article  PubMed  Google Scholar 

  • Wolff NA, Lee WK, Abouhamed M et al (2008) Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells. Toxicol Appl Pharmacol 230:78–85

    Article  PubMed  Google Scholar 

  • Woods JM, Leone M, Klosowska K et al (2008) Direct antiangiogenic actions of cadmium on human vascular endothelial cells. Toxicol In Vitro 22:643–651

    Article  PubMed  Google Scholar 

  • Xu G, Zhou G, Jin T et al (1999) Apoptosis and p53 gene expression in male reproductive tissues of cadmium exposed rats. Biometals 12:131–139

    Article  PubMed  Google Scholar 

  • Yamamoto C, Kaji T, Sakamoto M et al (1996) Effects of cadmium on the release of tissue plasminogen activator and plasminogen activator inhibitor type 1 from cultured human vascular smooth muscle cells and fibroblasts. Toxicology 106:179–185

    Article  PubMed  Google Scholar 

  • Yang PM, Chen HC, Tsai JS et al (2007) Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-kappaB activity. Chem Res Toxicol 20:406–415

    Article  PubMed  Google Scholar 

  • Yoopan N, Watcharasit P, Wongsawatkul O et al (2008) Attenuation of eNOS expression in cadmium-induced hypertensive rats. Toxicol Lett 176:157–161

    Article  PubMed  Google Scholar 

  • Yuan C, Kadiiska M, Achanzar WE et al (2000) Possible role of caspase-3 inhibition in cadmium-induced blockage of apoptosis. Toxicol Appl Pharmacol 164:321–329

    Article  PubMed  Google Scholar 

  • Zikic RV, Stajn AS, Ognjanovic BI et al (1998) The effect of cadmium and selenium on the antioxidant enzyme activities in rat heart. J Environ Pathol Toxicol Oncol 17:259–264

    PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Mrs. Rajam Csordas-Iyer for correction of the English language. This project was supported by the Austrian National Bank (Project # 12697 to D.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bernhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messner, B., Bernhard, D. Cadmium and cardiovascular diseases: cell biology, pathophysiology, and epidemiological relevance. Biometals 23, 811–822 (2010). https://doi.org/10.1007/s10534-010-9314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9314-4

Keywords

Navigation