Skip to main content
Log in

Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI)

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

An ERRATUM to this article was published on 19 December 2007

Abstract

Annexin V recognizes apoptotic cells by specific molecular interaction with phosphatidyl serine, a lipid that is normally sequestered in the inner leaflet of the cell membrane, but is translocated to the outer leaflet in apoptotic cells, such as foam cells of atherosclerotic plaque. Annexin V could potentially deliver carried materials (such as superparamagnetic contrast agents for magnetic resonance imaging) to sites containing apoptotic cells, such as high grade atherosclerotic lesions, so we administered biochemically-derivatized (annexin V) superparmagnetic iron oxide particles (SPIONs) parenterally to two related rabbit models of human atherosclerosis. We observe development of negative magnetic resonance imaging (MRI) contrast in atheromatous lesions and but not in healthy artery. Vascular targeting by annexin V SPIONs is atheroma-specific (i.e., does not occur in healthy control rabbits) and requires active annexin V decorating the SPION surface. Targeted SPIONs produce negative contrast at doses that are 2,000-fold lower than reported for non-specific atheroma uptake of untargeted superparamagnetic nanoparticles in plaque in the same animal model. Occlusive and mural plaques are differentiable. While most of the dose accumulates in liver, spleen, kidneys and bladder, annexin V SPIONs also partition rapidly and deeply into early apoptotic foamy macrophages in plaque. Contrast in plaque decays within 2 months, allowing MRI images to be replicated with a subsequent, identical dose of annexin V SPIONs. Thus, biologically targeted superparamagnetic contrast agents can contribute to non-invasive evaluation of cardiovascular lesions by simultaneously extracting morphological and biochemical data from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • E.T. Ahrens, M. Feili-Hariri, H. Xu, G. Genove, P.A. Morel, Magn. Reson. Med. 49, 1006–1013 (2003)

    Article  Google Scholar 

  • A.K. Belizaire, L. Tchistiakova, Y. St-Pierre, V. Alakhov, Biochem. Biophys. Res. Commun. 309, 625–630 (2003)

    Article  Google Scholar 

  • V. Bhatia, R. Bhatia, S. Dhindsa, A. Virk, J. Postgrad. Med. 49, 361–368 (2003)

    Google Scholar 

  • Y. Cui, D. Zhao, H. Liu, Z. Ning, J. Yang, X. Qing, S. Yu, C. Wu, Maturitas 50, 337–343 (2005)

    Article  Google Scholar 

  • J.R. Davies, J.F. Rudd, T.D. Fryer, P.L. Weissberg, J. Nucl. Cardiol. 12, 234–246 (2005)

    Article  Google Scholar 

  • R. Duncan, Chem. Ind. 7, 262–264 (1997a)

    Google Scholar 

  • R. Duncan, J. Drug Target. 5, 1–4 (1997b)

    Article  MathSciNet  Google Scholar 

  • R. Duncan, S. Gac-Breton, R. Keane, R. Musila, Y.N. Sat, R. Satchi, F. Searle, J. Control. Release 74, 135–146 (2001)

    Article  Google Scholar 

  • Y. Gavrieli, Y. Sherman, S.A. Ben-Sasson, J. Cell Biol. 119, 493–501 (1992)

    Article  Google Scholar 

  • D.S. Goldin, C.A. Dahl, K.L. Olsen, L.H. Ostrach, R.D. Klausner, Science 292, 443–445 (2001)

    Article  Google Scholar 

  • D. Hartung, M. Sarai, A. Petrov, F. Kolodgie, N. Narula, J. Verjans, R. Virmani, C. Reutelingsperger, L. Hofstra, J. Narula, J. Nucl. Med. 46, 2051–2056 (2005)

    Google Scholar 

  • L. Hegyi, S.J. Hardwick, R.C. Siow, J.N. Skepper, J. Hematother. Stem Cell Res. 10, 27–42 (2001)

    Article  Google Scholar 

  • T. Ito, S. Yamada, M. Shiomi, Exp. Anim. 53, 339–346 (2004)

    Article  Google Scholar 

  • R.K. Jain, J. Control. Release 53, 49–67 (1998)

    Article  Google Scholar 

  • F.D. Kolodgie, H.K. Gold, A.P. Burke, D.R. Fowler, H.S. Kruth, D.K. Weber, A. Farb, L.J. Guerrero, M. Hayase, R. Kutys, J. Narula, A.V. Finn, R. Virmani, N. Engl. J. Med. 349, 2316–2325 (2003a)

    Article  Google Scholar 

  • F.D. Kolodgie, A. Petrov, R. Virmani, N. Narula, J.W. Verjans, D.K. Weber, D. Hartung, N. Steinmetz, J.L. Vanderheyden, M.A. Vannan, H.K. Gold, C.P. Reutelingsperger, L. Hofstra, J. Narula, Circulation 108, 3134–3139 (2003b)

    Article  Google Scholar 

  • F.D. Kolodgie, R. Virmani, A.P. Burke, A. Farb, D.K. Weber, R. Kutys, A.V. Finn, H.K. Gold, Heart 90, 1385–1391 (2004)

    Article  Google Scholar 

  • S.C. Lee, M. Ruegsegger, P.D. Barnes, B.R. Smith, M. Ferrari, in The Nanotechnology Handbook, ed by B. Bhushan (Springer, Heidelberg, Germany, 2004a), pp. 279–322

    Chapter  Google Scholar 

  • S.C. Lee, M. Ruegsegger, M. Ferrari, in The Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, CA, 2004b)

    Google Scholar 

  • W. Li, A. Hellsten, L.S. Jacobsson, H.M. Blomqvist, A.G. Olsson, X.M. Yuan, J. Mol. Cell. Cardiol. 37, 969–978 (2004)

    Article  Google Scholar 

  • P. Libby, G. Sukhova, R.T. Lee, Z.S. Galis, J. Cardiovasc. Pharmacol. 25(Suppl 2), S9–12 (1995)

    Article  Google Scholar 

  • C. Liu, G. Bhattacharjee, W. Boisvert, R. Dilley, T. Edgington, Am. J. Pathol. 163, 1859–1871 (2003)

    Google Scholar 

  • F. Lupu, N. Moldovan, J. Ryan, D. Stern, N. Simionescu, Blood Coagul. Fibrinolysis 4, 743–752 (1993)

    Google Scholar 

  • H. Maeda, T. Sawa, T. Konno, J. Cont. Release 74, 47–61 (2001)

    Article  Google Scholar 

  • M. McAuliffe, F. Lalonde, D. McGarry, W. Gandler, K. Csaky, B. Trus, in IEEE Computer-based Medical Systems (CBMS) (2001), pp. 381–386

  • M. Meuwissen, A.C. van der Wal, K.T. Koch, C.M. van der Loos, S.A. Chamuleau, P. Teeling, R.J. de Winter, J.G. Tijssen, A.E. Becker, J.J. Piek, Am. J. Med. 114, 521–527 (2003)

    Article  Google Scholar 

  • N.I. Moldovan, L. Moldovan, N. Simionescu, Blood Coagul. Fibrinolysis 5, 921–928 (1994)

    Article  Google Scholar 

  • P.R. Moreno, K.R. Purushothaman, M. Sirol, A.P. Levy, V. Fuster, Circulation 113, 2245–2252 (2006)

    Article  Google Scholar 

  • M. Naghavi, P. Libby, E. Falk, S.W. Casscells, S. Litovsky, J. Rumberger, J.J. Badimon, C. Stefanadis, P. Moreno, G. Pasterkamp, Z. Fayad, P.H. Stone, S. Waxman, P. Raggi, M. Madjid, A. Zarrabi, A. Burke, C. Yuan, P.J. Fitzgerald, D.S. Siscovick, C.L. de Korte, M. Aikawa, K.E. Juhani Airaksinen, G. Assmann, C.R. Becker, J.H. Chesebro, A. Farb, Z.S. Galis, C. Jackson, I.K. Jang, W. Koenig, R.A. Lodder, K. March, J. Demirovic, M. Navab, S.G. Priori, M.D. Rekhter, R. Bahr, S.M. Grundy, R. Mehran, A. Colombo, E. Boerwinkle, C. Ballantyne, W. Insull Jr., R.S. Schwartz, R. Vogel, P.W. Serruys, G.K. Hansson, D.P. Faxon, S. Kaul, H. Drexler, P. Greenland, J.E. Muller, R. Virmani, P.M. Ridker, D.P. Zipes, P.K. Shah, J.T. Willerson, Circulation 108, 1664–1672 (2003)

    Article  Google Scholar 

  • N. Nighoghossian, L. Derex, P. Douek, Stroke 36, 2764–2772 (2005)

    Article  Google Scholar 

  • J. Riemer, H.H. Hoepken, H. Czerwinska, S.R. Robinson, R. Dringen, Anal. Biochem. 331, 370–375 (2004)

    Article  Google Scholar 

  • S.G. Ruehm, C. Corot, P. Vogt, S. Kolb, J.F. Debatin, Circulation 103, 415–422 (2001)

    Google Scholar 

  • E.A. Schellenberger, A. Bogdanov Jr., D. Hogemann, J. Tait, R. Weissleder, L. Josephson, Mol. Imaging 1, 102–107 (2002)

    Article  Google Scholar 

  • M. Shiomi, T. Ito, S. Yamada, S. Kawashima, J. Fan, Arterioscler. Thromb. Vasc. Biol. 23, 1239–1244 (2003)

    Article  Google Scholar 

  • P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Anal. Biochem. 150, 76–85 (1985)

    Article  Google Scholar 

  • V.E. Stoneman, M.R. Bennett, Clin. Sci. (Lond) 107, 343–354 (2004)

    Article  Google Scholar 

  • H.W. Strauss, M. Dunphy, N. Tokita, J. Nucl. Med. 45, 1106–1107 (2004)

    Google Scholar 

  • R. Weissleder, G. Elizondo, J. Wittenberg, C. Rabito, H. Bengele, L. Josephson, Radiology 175, 489–493 (1990a)

    Google Scholar 

  • R. Weissleder, P. Reimer, A.S. Lee, J. Wittenberg, T.J. Brady, AJR Am J Roentgenol 155, 1161–1167 (1990b)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge George Hinkle, Charles Hitchcock, Nathan Hall, Noe Tirado-Muniz, Krista LaPerle and Donna Kusewitt for their technical support and advice. This work supported was by BRTT02-0001, a grant from the Biomedical Research and Technology Transfer Commission of Ohio and National Science Foundation Grant No. 0221678.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Lee.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10544-007-9136-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, B.R., Heverhagen, J., Knopp, M. et al. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices 9, 719–727 (2007). https://doi.org/10.1007/s10544-007-9081-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9081-3

Keywords

Navigation