Skip to main content
Log in

Microfluidic platform for negative enrichment of circulating tumor cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Negative enrichment is the preferred approach for tumor cell isolation as it does not rely on biomarker expression. However, size-based negative enrichment methods suffer from well-known recovery/purity trade-off. Non-size based methods have a number of processing steps that lead to compounded cell loss due to extensive sample processing and handling which result in a low recovery efficiency. We present a method that performs negative enrichment in two steps from 2 ml of whole blood in a total assay processing time of 60 min. This negative enrichment method employs upstream immunomagnetic depletion to deplete CD45-positive WBCs followed by a microfabricated filter membrane to perform chemical-free RBC depletion and target cells isolation. Experiments of spiking two cell lines, MCF-7 and NCI-H1975, in the whole blood show an average of >90 % cell recovery over a range of spiked cell numbers. We also successfully recovered circulating tumor cells from 15 cancer patient samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CTC:

Circulating tumor cells

WBC:

White blood cell

RBC:

Red blood cell

EMT:

Epithelial to mesenchymal transition

TAC:

Tetrameric antibody complexes

GFP:

Green florescent protein

PBS:

Phosphate buffered saline

EpCAM:

Epithelial cell adhesion molecule

References

  • C. Alix-Panabières, K. Pantel, Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59, 110–118 (2013)

    Article  Google Scholar 

  • W.J. Allard, J. Matera, M.C. Miller, M. Repollet, M.C. Connelly, C. Rao, A.G. Tibbe, J.W. Uhr, L.W. Terstappen, Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10(20), 6897–6904 (2004)

    Article  Google Scholar 

  • S.K. Arya, B. Lim, A.R. Abdur Rahman, Enrichment, detection and clinical significance of circulating tumor cell. Lab Chip 13(11), 1995–2027 (2013)

    Article  Google Scholar 

  • G.T. Budd, Let me do more than count the ways: what circulating tumor cells can tell us about the biology of cancer. Mol. Pharm. 6(5), 1307–1310 (2009)

    Google Scholar 

  • J. Chen, J. Li, Y. Sun, Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12(10), 1753–1767 (2012)

    Article  MathSciNet  Google Scholar 

  • E.H. Cho, M. Wendel, M. Luttgen, C. Yoshioka, D. Marrinucci, D. Lazar, E. Schram, J. Nieva, L. Bazhenova, A. Morgan, A.H. Ko, W.M. Korn, A. Kolatkar, K. Bethel, P. Kuhn, Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys. Biol. 9(1), 16001 (2012)

    Article  Google Scholar 

  • S. Denis, M. Keith, S. Kam, S. Alison, H. Richard, T. Don, J. Chunsheng, M. Aladin, T. David, D. Yi, C. Jason, W. Michele, P. Bill, C. Walter, A microfluidic system for the selection of circulating tumor cells that utilizes both affinity and size capture technologies. Cancer Res. 72(8), 2389 (2012)

    Google Scholar 

  • I. Desitter, B.S. Guerrouahen, N. Benali-Furet, J. Wechsler, P.A. Jänne, Y. Kuang, M. Yanagita, L. Wang, J.A. Berkowitz, R.J. Distel, Y.E. Cayre, A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer Res. 31(2), 427–441 (2011)

    Google Scholar 

  • N. Gerges, J. Rak, N. Jabado, New technologies for the detection of circulating tumour cells. Br. Med. Bull. 94, 49–64 (2010)

    Article  Google Scholar 

  • J.C. Goeminne, T. Guillaume, M. Symann, Pitfalls in the detection of disseminated non-hematological tumor cells. Ann. Oncol. 11(7), 785–792 (2000)

    Article  Google Scholar 

  • T.M. Gorges, I. Tinhofer, M. Drosch, L. Roese, T.M. Zollner, T. Krahn, O. Ahsen, Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 12, 178 (2012)

    Article  Google Scholar 

  • V. Gupta, I. Jafferji, M. Garza, V.O. Melnikova, D.K. Hasegawa, R. Pethig, D.W. Davis, ApoStream(™), a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics 6(2), 024133 (2012)

    Google Scholar 

  • W. He, S.H. Kularatne, K.R. Kalli, F.G. Prendergast, R.J. Amato, G.G. Klee, L.C. Hartmann, P.S. Low, Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor-specific fluorescent ligands. Int. J. Cancer 123(8), 1968–1973 (2008)

    Article  Google Scholar 

  • K. Hoshino, Y.Y. Huang, N. Lane, M. Huebschman, J.W. Uhr, E.P. Frenkel, X. Zhang, Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11(20), 3449–3457 (2011)

    Article  Google Scholar 

  • J. Hou, K. Matthew, W. Tim, M. Karen, S. Robert, B. Fiona, D. Caroline, Circulating tumor cells, enumeration and beyond. Cancers 2, 1236–1250 (2010)

    Article  Google Scholar 

  • S.C. Hur, A.J. Mach, D. Di Carlo, High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5(2), 022206 (2011)

  • H.M. Ji, V. Samper, Y. Chen, C.K. Heng, T.M. Lim, L. Yobas, Silicon-based microfilters for whole blood cell separation. Biomed. Microdevices 10(2), 251–257 (2008)

    Article  Google Scholar 

  • H.J. Kahn, A. Presta, L.Y. Yang, J. Blondal, M. Trudeau, L. Lickley, C. Holloway, D.R. McCready, D. Maclean, A. Marks, Enumeration of circulating tumor cells in the blood of breast cancer patients after filtration enrichment: correlation with disease stage. Breast Cancer Res. Treat. 86(3), 237–247 (2004)

    Article  Google Scholar 

  • S. Kasimir-Bauer, O. Hoffmann, D. Wallwiener, R. Kimmig, T. Fehm, Expression of stem cell and epithelial–mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res. 14(1), 15 (2012)

    Article  Google Scholar 

  • O. Lara, X. Tong, M. Zborowski, J.J. Chalmers, Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp. Hematol. 2(10), 891–904 (2004)

    Article  Google Scholar 

  • L.S. Lim, M. Hu, M.C. Huang, W.C. Cheong, A.T. Gan, X.L. Looi, S.M. Leong, E.S. Koay, M.H. Li, Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lab Chip 12(21), 4388–4396 (2012)

    Article  Google Scholar 

  • M. Lustberg, K.R. Jatana, M. Zborowski, J.J. Chalmers, Emerging technologies for CTC detection based on depletion of normal cells. Recent Results Cancer Res. 195, 97–110 (2012)

    Article  Google Scholar 

  • P. Lv, Z. Tang, X. Liang, M. Guo, R.P.S. Han, Spatially gradated segregation and recovery of circulating tumor cells from peripheral blood of cancer patients. Biomicrofluidics 7, 034109 (2013)

    Article  Google Scholar 

  • D. Marrinucci, K. Bethel, D. Lazar, J. Fisher, E. Huynh, P. Clark, R. Bruce, J. Nieva, P. Kuhn, Cytomorphology of circulating colorectal tumor cells: a small case series. J. Oncol. (2010). doi:10.1155/2010/861341

    Google Scholar 

  • D. Marrinucci, K. Bethel, A. Kolatkar, M.S. Luttgen, M. Malchiodi, F. Baehring, K. Voigt, D. Lazar, J. Nieva, L. Bazhenova, A.H. Ko, W.M. Korn, E. Schram, M. Coward, X. Yang, T. Metzner, R. Lamy, M. Honnatti, C. Yoshioka, J. Kunken, Y. Petrova, D. Sok, D. Nelson, P. Kuhn, Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys. Biol. 9(1), 016003 (2012)

    Article  Google Scholar 

  • S. Meng, D. Tripathy, E.P. Frenkel, S. Shete, E.Z. Naftalis, J.F. Huth, P.D. Beitsch, M. Leitch, S. Hoover, D. Euhus, B. Haley, L. Morrison, T.P. Fleming, D. Herlyn, L.W. Terstappen, T. Fehm, T.F. Tucker, N. Lane, J. Wang, J.W. Uhr, Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004)

    Article  Google Scholar 

  • S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007)

    Article  Google Scholar 

  • A.A. Ng, B.T. Lee, T.S. Teo, M. Poidinger, J.E. Connoll, Optimal cellular preservation for high dimensional flow cytometric analysis of multicentre trials. J. Immunol. Methods 385, 79–89 (2012)

    Article  Google Scholar 

  • J.M. Park, J.Y. Lee, J.G. Lee, H. Jeong, J.M. Oh, Y.J. Kim, D. Park, M.S. Kim, H.J. Lee, J.H. Oh, S.S. Lee, W.Y. Lee, N. Huh, Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Anal. Chem. 84(17), 7400–7407 (2012)

    Article  Google Scholar 

  • D.R. Parkinson, N. Dracopoli, B. Gumbs Petty, C. Compton, M. Cristofanilli, A. Deisseroth, D.F. Hayes, G. Kapke, P. Kumar, J.S. Lee, M.C. Liu, R. McCormack, S. Mikulski, L. Nagahara, K. Pantel, S. Pearson-White, E.A. Punnoose, L.T. Roadcap, A.E. Schade, H.I. Scher, C.C. Sigman, G.J. Kelloff, Considerations in the development of circulating tumor cell technology for clinical use. J. Transl. Med. 10, 138 (2012)

    Article  Google Scholar 

  • P. Paterlini-Brechot, N.L. Benali, Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 253(2), 180–204 (2007)

    Article  Google Scholar 

  • E. Racila, D. Euhus, A.J. Weiss, C. Rao, J. McConnell, L.W. Terstappen, J.W. Uhr, Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. U. S. A. 95(8), 4589–4594 (1998)

    Article  Google Scholar 

  • S. Riethdorf, K. Pantel, Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology 75(2), 140–148 (2008)

    Article  Google Scholar 

  • S. Riethdorf, H. Fritsche, V. Müller, T. Rau, C. Schindlbeck, B. Rack, W. Janni, C. Coith, K. Beck, F. Janicke, S. Jackson, T. Gornet, M. Cristofanilli, K. Pantel, Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin. Cancer Res. 13(3), 920–928 (2007)

    Article  Google Scholar 

  • R. Rolle, U. Günzel, B. Pachmann, K. Willen, K. Höffken, Pachmann, Increase in number of circulating disseminated epithelial cells after surgery for non-small cell lung cancer monitored by MAINTRAC(R) is a predictor for relapse: a preliminary report. World J. Surg. Oncol. 3(1), 18 (2005)

    Article  Google Scholar 

  • B.G. Sajay, L. Yuxin, C. Chia-Pin, P.D. Puiu, A.R.A. Rahman, Optimization of breast tumor cells isolation efficiency and purity by membrane filtration. World Acad. Sci. Eng. Technol. 69, 801–804 (2012)

    Google Scholar 

  • B.G. Sajay, C.P. Chang, H. Ahmad, W.C. Chung, P.D. Puiu, A.R. Rahman, Towards an optimal and unbiased approach for tumor cell isolation. Biomed. Microdevices 15(4), 699–709 (2013)

    Google Scholar 

  • J. Selinummi, J. Seppala, O. Yli-Harja, J.A. Puhakka, Software for quantification of labeled bacteria from digital microscope images by automated image analysis. Biotechniques 39(6), 859–863 (2005)

    Article  Google Scholar 

  • S. Shim, K. Stemke-Hale, A.M. Tsimberidou, J. Noshari, T.E. Anderson, P.R. Gascoyne, Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis. Biomicrofluidics 7(1), 011807 (2013)

    Google Scholar 

  • S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd, A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, M. Toner, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. U. S. A. 107, 18392–18397 (2010)

    Article  Google Scholar 

  • Y.F. Sun, X.R. Yang, J. Zhou, S.J. Qiu, J. Fan, Y. Xu, Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J. Cancer Res. Clin. Oncol. 137(8), 1151–1173 (2011)

    Article  Google Scholar 

  • J. Sun, C. Liu, M. Li, J. Wang, Y. Xianyu, G. Hu, X. Jiang, Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics 7(1), 011802 (2013)

    Google Scholar 

  • S.J. Tan, L. Yobas, G.Y. Lee, C.N. Ong, C.T. Lim, Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices 11(4), 883–892 (2009)

    Article  Google Scholar 

  • S.J. Tan, R.L. Lakshmi, P. Chen, W.T. Lim, L. Yobas, C.T. Lim, Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients. Biosens. Bioelectron. 26(4), 1701–1705 (2010)

    Google Scholar 

  • X. Tong, L. Yang, J.C. Lang, M. Zborowski, J. Chalmers, Application of immunomagnetic cell enrichment in combination with RT-PCR for the detection of rare circulating head and neck tumor cells in human peripheral blood. Cytometry B Clin. Cytom. 72(5), 310–323 (2007)

    Article  Google Scholar 

  • A.A. Truet, A. Letizia, E. Malyangu, F. Sinyangwe, B.N. Morales, N.F. Crum, S.M. Crowe, Efficacy of Cyto-Chex blood preservative for delayed manual CD4 testing using Dynal T4 Quant CD4 test among HIV-infected persons in Zambia. J. Acquir. Immune Defic. Syndr. 41(2), 168–174 (2006)

    Article  Google Scholar 

  • T. Xu, B. Lu, Y.C. Tai, A. Goldkorn, A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter. Cancer Res. 70(16), 6420–6426 (2010)

    Article  Google Scholar 

  • L. Yang, J.C. Lang, P. Balasubramanian, K.R. Jatana, D. Schuller, A. Agrawal, M. Zborowski, J.J. Chalmers, Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells. Biotechnol. Bioeng. 102(2), 521–534 (2009)

    Article  Google Scholar 

  • M. Yu, S. Stott, M. Toner, S. Maheswaran, D.A. Haber, Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192(3), 373–382 (2011)

    Article  Google Scholar 

  • X. Zhe, M.L. Cher, R.D. Bonfil, Circulating tumor cells: finding the needle in the haystack. Am. J. Cancer Res. 1(6), 740–751 (2011)

    Google Scholar 

  • L. Zhu, X.L. Peh, H.M. Ji, C.Y. Teo, H.H. Feng, W.T. Liu, Cell loss in integrated microfluidic device. Biomed. Microdevices 9(5), 745–750 (2007)

    Article  Google Scholar 

  • V. Zieglschmid, C. Hollmann, O. Böcher, Detection of disseminated tumor cells in peripheral blood. Crit. Rev. Clin. Lab. Sci. 42(2), 155–196 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore under the grant number 1031490005. In addition, we greatly appreciate the support from Dr. Chaitanya Kantak for microslit membrane fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Pin Chang.

Additional information

Bhuvanendran Nair Gourikutty Sajay and Chia-Pin Chang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajay, B.N.G., Chang, CP., Ahmad, H. et al. Microfluidic platform for negative enrichment of circulating tumor cells. Biomed Microdevices 16, 537–548 (2014). https://doi.org/10.1007/s10544-014-9856-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9856-2

Keywords

Navigation