Skip to main content
Log in

Micelle-like nanoparticles as siRNA and miRNA carriers for cancer therapy

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Gene therapy has emerged as an alternative in the treatment of cancer, particularly in cases of resistance to chemo and radiotherapy. Different approaches to deliver genetic material to tumor tissues have been proposed, including the use of small non-coding RNAs due to their multiple mechanisms of action. However, such promise has shown limits in in vivo application related to RNA’s biological instability and stimulation of immunity, urging the development of systems able to overcome those barriers. In this review, we discuss the use of RNA interference in cancer therapy with special attention to the role of siRNA and miRNA and to the challenges of their delivery in vivo. We introduce a promising class of drug delivery system known as micelle-like nanoparticles and explore their synthesis and advantages for gene therapy as well as the recent findings in in vitro, in vivo and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • L.J. Aaldering, H. Tayeb, S. Krishnan, et al., RNA Biol. 12, 412–425 (2015)

    Google Scholar 

  • M. Abbasi, H. Uludag, V. Incani, et al., Biomacromolecules 9, 1618–1630 (2008)

    Google Scholar 

  • M. Abbasi, A. Lavasanifar, L.G. Berthiaume, et al., Cancer 116, 5544–5554 (2010)

    Google Scholar 

  • A. Akinc, M. Thomas, A.M. Klibanov, et al., J. Gene Med. 7, 657–663 (2005)

    Google Scholar 

  • H.M. Aliabadi, B. Landry, R.K. Bahadur, et al., Macromol. Biosci. 11, 662–672 (2011)

    Google Scholar 

  • A. Alshamsan, A. Haddadi, V. Incani, et al., Mol. Pharm. 6, 121–133 (2009)

    Google Scholar 

  • R.V. Benjaminsen, M.A. Mattebjerg, J.R. Henriksen, et al., Mol. Ther. 21, 149–157 (2013)

    Google Scholar 

  • N. Bertrand, P. Grenier, M. Mahmoudi, et al., Nat. Commun. 8, 777 (2017)

    Google Scholar 

  • U. Boas, P.M. Heegaard, Chem. Soc. Rev. 33, 43–63 (2004)

    Google Scholar 

  • I. Brigger, C. Dubernet, P. Couvreur, Adv. Drug Deliv. Rev. 54, 631–651 (2002)

    Google Scholar 

  • J.A. Broderick, P.D. Zamore, Gene Ther. 18, 1104–1110 (2011)

    Google Scholar 

  • R.W. Carthew, E.J. Sontheimer, Cell 136, 642–655 (2009)

    Google Scholar 

  • S.Y. Chae, S. Son, M. Lee, et al., J. Control. Release 109, 330–344 (2005)

    Google Scholar 

  • K.L. Chang, Y. Higuchi, S. Kawakami, et al., Bioconjug. Chem. 21, 1087–1095 (2010)

    Google Scholar 

  • X. Chen, L.S. Mangala, C. Rodriguez-Aguayo, et al., Cancer Metastasis Rev. 37, 107–124 (2018)

    Google Scholar 

  • D. Chitkara, A. Mittal, R.I. Mahato, Adv. Drug Deliv. Rev. 81, 34–52 (2015)

    Google Scholar 

  • Y.H. Choi, F. Liu, J.S. Kim, et al., J. Control. Release 54, 39–48 (1998)

    Google Scholar 

  • Clinical Trials Database (2018). https://clinicaltrials.gov. Accessed 5 Mar 2018

  • J. Conde, E.R. Edelman, N. Artzi, Adv. Drug Deliv. Rev. 81, 169–183 (2015)

    Google Scholar 

  • S.R. Croy, G.S. Kwon, Curr. Pharm. Des. 12, 4669–4684 (2006)

    Google Scholar 

  • F. Danhier, K. Messaoudi, L. Lemaire, et al., Int. J. Pharm. 481, 154–161 (2015)

    Google Scholar 

  • T.R. Daniels, E. Bernabeu, J.A. Rodríguez, et al., Biochim. Biophys. Acta 1820, 291–317 (2012)

    Google Scholar 

  • P.R. Dash, M.L. Read, L.B. Barrett, et al., Gene Ther. 6, 643–650 (1999)

    Google Scholar 

  • M. de Planell-Saguer, M.C. Rodicio, Anal. Chim. Acta 699, 134–152 (2011)

    Google Scholar 

  • M.A. Dobrovolskaia, S.E. McNeil, Nat. Nanotechnol. 2, 469–478 (2007)

    Google Scholar 

  • U. Drebber, M. Lay, I. Wedemeyer, et al., Int. J. Oncol. 39, 409–415 (2011)

    Google Scholar 

  • C. Dufès, I.F. Uchegbu, A.G. Schätzlein, Adv. Drug Deliv. Rev. 57, 2177–2202 (2005)

    Google Scholar 

  • N.S. El-Sayed, M. Sharma, H.M. Aliabadi, et al., Int. J. Biol. Macromol. 112, 694–702 (2018)

    Google Scholar 

  • M. Ferracin, A. Veronese, M. Negrini, Expert. Rev. Mol. Diagn. 10, 297–308 (2010)

    Google Scholar 

  • M.P. Gamcsik, M.S. Kasibhatla, S.D. Teeter, et al., Biomarkers 17, 671–691 (2012)

    Google Scholar 

  • N.S. Gandhi, R.K. Tekade, M.B. Chougule, J. Control. Release 194, 238–256 (2014)

    Google Scholar 

  • Y. Gao, X.L. Liu, X.R. Li, Int. J. Nanomedicine 6, 1017–1025 (2011)

    Google Scholar 

  • M. Garofalo, C. Quintavalle, G. Romano, et al., Curr. Mol. Med. 12, 27–33 (2012)

    Google Scholar 

  • Y. Ge, L. Zhang, M. Nikolova, et al., Nat. Cell Biol. 18, 111–121 (2016)

    Google Scholar 

  • C.L. Gebhart, A.V. Kabanov, J. Control. Release 73, 401–416 (2001)

    Google Scholar 

  • H. Gibori, S. Eliyahu, A. Krivitsky, et al., Nat. Commun. 9, 16 (2018)

    Google Scholar 

  • S.L. Ginn, I.E. Alexander, M.L. Edelstein, et al., J. Gene. Med. 15, 65–77 (2013)

    Google Scholar 

  • GLOBOCAN (2012). http://gco.iarc.fr. Accessed 13 Mar 2018

  • A.M. Grabowska, R. Kircheis, R. Kumari, et al., Biomater. Sci. 3, 1439–1448 (2015)

    Google Scholar 

  • A.C. Grayson, A.M. Doody, D. Putnam, Pharm. Res. 23, 1868–1876 (2006)

    Google Scholar 

  • J. Guo, W.P. Cheng, J. Gu, et al., Eur. J. Pharm. Sci. 45, 521–532 (2012)

    Google Scholar 

  • J. Haensler, F.C. Szoka Jr., Bioconjug. Chem. 4, 372–379 (1993)

    Google Scholar 

  • F.Q. Hu, M.D. Zhao, H. Yuan, et al., Int. J. Pharm. 315, 158–166 (2006)

    Google Scholar 

  • V. Incani, X. Lin, A. Lavasanifar, et al., ACS Appl. Mater. Interfaces 1, 841–848 (2009)

    Google Scholar 

  • J. Janiszewska, M. Szaumkessel, M. Kostrzewska-Poczekaj, et al., PLoS One 10, e0144924 (2015)

    Google Scholar 

  • Y.Y. Jin, J. Andrade, E. Wickstrom, PLoS One 10, e0142574 (2015)

    Google Scholar 

  • F. Jing, J. Li, D. Liu, et al., Pharm. Biol. 51, 643–649 (2013)

    Google Scholar 

  • J.V. Jokerst, T. Lobovkina, R.N. Zare, et al., Nanomedicine (London) 6, 715–728 (2011)

    Google Scholar 

  • A.J. Khopade, D.B. Shenoy, S.A. Khopade, et al., Langmuir 20, 7368–7373 (2004)

    Google Scholar 

  • V. Kumar, R.I. Mahato, Pharm. Res. 32, 341–361 (2015)

    Google Scholar 

  • A. Kumari, S.K. Yadav, S.C. Yadav, Colloids Surf. B: Biointerfaces 75, 1–18 (2010)

    Google Scholar 

  • M. Lavertu, S. Méthot, N. Tran-Khanh, et al., Biomaterials 27, 4815–4824 (2006)

    Google Scholar 

  • B. Layek, J. Singh, Carbohydr. Polym. 89, 403–410 (2012)

    Google Scholar 

  • B. Layek, L. Lipp, J. Singh, Int. J. Mol. Sci. 16, 28912–28930 (2015)

    Google Scholar 

  • Z. Li, T.M. Rana, Nat. Rev. Drug Discov. 13, 622–638 (2014)

    Google Scholar 

  • N. Li, X. Zhao, L. Wang, et al., Tumour Biol. 37, 7767–7776 (2015a)

    Google Scholar 

  • D. Li, Z. Li, J. Xiong, et al., Am. J. Cancer Res. 5, 2980–2997 (2015b)

    Google Scholar 

  • H. Liao, Y. Xiao, Y. Hu, et al., Oncol. Lett. 10, 2055–2062 (2015)

    Google Scholar 

  • C. Liu, G. Zhao, J. Liu, et al., J. Control. Release 140, 277–283 (2009)

    Google Scholar 

  • X. Liu, C. Liu, J. Zhou, et al., Nano 7, 3867–3875 (2015)

    Google Scholar 

  • R. Mandke, J. Singh, Pharm. Res. 29, 883–897 (2012a)

    Google Scholar 

  • R. Mandke, J. Singh, J. Pharm. Sci. 101, 268–282 (2012b)

    Google Scholar 

  • A.M. Mansour, J. Drevs, N. Esser, et al., Cancer Res. 63, 4062–4066 (2003)

    Google Scholar 

  • V. Márquez-Miranda, I. Araya-Durán, M.B. Camarada, et al., Sci. Rep. 6, 29436 (2016)

    Google Scholar 

  • K. Messaoudi, P. Saulnier, K. Boesen, et al., Int. J. Nanomedicine 9, 1479–1490 (2014)

    Google Scholar 

  • P. Midoux, C. Pichon, J.J. Yaouanc, et al., Br. J. Pharmacol. 157, 166–178 (2009)

    Google Scholar 

  • G. Misso, M.T. Di Martino, G. De Rosa, et al., Mol. Ther. Nucleic Acids. e194, 3 (2014)

    Google Scholar 

  • K. Modra, S. Dai, H. Zhang, et al., Eng. Life Sci. 15, 489–498 (2015)

    Google Scholar 

  • C. Morrison, Nat. Rev. Drug Discov. 17, 156–157 (2018)

    Google Scholar 

  • S.A. Moschos, S.W. Jones, M.M. Perry, et al., Bioconjug. Chem. 18, 1450–1459 (2007)

    Google Scholar 

  • S. Movassaghian, H.R. Moghimi, F.H. Shirazi, J. Drug Target. 19, 925–932 (2011)

    Google Scholar 

  • K. Nakamura, A.S. Abu Lila, M. Matsunaga, et al., Mol. Ther. 19, 2040–2047 (2011)

    Google Scholar 

  • G. Navarro, S. Essex, R.R. Sawant, et al., Nanomedicine 10, 411–419 (2014)

    Google Scholar 

  • G. Navarro, J. Pan, V.P. Torchilin, Mol. Pharm. 12, 301–313 (2015)

    Google Scholar 

  • A.E. Nel, L. Mädler, D. Velegol, et al., Nat. Mater. 8, 543–557 (2009)

    Google Scholar 

  • M.S. Nicoloso, R. Spizzo, M. Shimizu, et al., Nat. Rev. Cancer 9, 293–302 (2009)

    Google Scholar 

  • U. Nir, B. Cohen, L. Chen, et al., Nucleic Acids Res. 12, 6979–6993 (1984)

    Google Scholar 

  • K. Oumzil, S. Khiati, M.W. Grinstaff, et al., J. Control. Release 151, 123–130 (2011)

    Google Scholar 

  • D. Oupicky, M. Ogris, K.A. Howard, et al., Mol. Ther. 5, 463–472 (2002)

    Google Scholar 

  • C.C. Pak, R.K. Erukulla, P.L. Ahl, et al., Biochim. Biophys. Acta 1419, 111–126 (1999)

    Google Scholar 

  • L. Palmerston Mendes, J. Pan, V.P. Torchilin, Molecules. 22, 1401 (2017)

    Google Scholar 

  • M.B. Parmar, D.N. Meenakshi Sundaram, R.B. K C, et al., Acta Biomater. 66, 294–309 (2017)

    Google Scholar 

  • M.L. Patil, M. Zhang, T. Minko, ACS Nano 5, 1877–1887 (2011)

    Google Scholar 

  • F. Perche, S. Biswas, T. Wang, et al., Angew. Chem. Int. Ed. Eng. 53, 3362–3366 (2014)

    Google Scholar 

  • R.S. Pillai, S.N. Bhattacharyya, W. Filipowicz, Trends Cell Biol. 17, 118–126 (2007)

    Google Scholar 

  • C.W. Pouton, P. Lucas, B.J. Thomas, et al., J. Control. Release 53, 289–299 (1998)

    Google Scholar 

  • G.K. Prameela, B.V. Phani Kumar, A. Pan, et al., Phys. Chem. Chem. Phys. 17, 30560–30569 (2015)

    Google Scholar 

  • S. Rheiner, D. Reichel, P. Rychahou, et al., Int. J. Pharm. 528, 536–546 (2017)

    Google Scholar 

  • M. Ruponen, S. Rönkkö, P. Honkakoski, et al., J. Biol. Chem. 276, 33875–33880 (2001)

    Google Scholar 

  • G. Salzano, R. Riehle, G. Navarro, et al., Cancer Lett. 343, 224–231 (2014)

    Google Scholar 

  • G. Salzano, G. Navarro, M.S. Trivedi, et al., Mol. Cancer Ther. 14, 1075–1084 (2015a)

    Google Scholar 

  • G. Salzano, D.F. Costa, V.P. Torchilin, Curr. Pharm. Des. 21, 4566–4573 (2015b)

    Google Scholar 

  • G. Salzano, D.F. Costa, C. Sarisozen, et al., Small 12, 4837–4848 (2016)

    Google Scholar 

  • S.M. Sarett, C.E. Nelson, C.L. Duvall, J. Control. Release 218, 94–113 (2015)

    Google Scholar 

  • J. Shao, J. Cao, Y. Liu, et al., FEBS Open Bio. 5, 893–899 (2015)

    Google Scholar 

  • R.S. Shukla, B. Qin, K. Cheng, Mol. Pharm. 11, 3395–3408 (2014)

    Google Scholar 

  • I. Singh, A.K. Rehni, R. Kalra, et al., Pharmazie 63, 491–496 (2008)

    Google Scholar 

  • N.D. Sonawane, F.C. Szoka Jr., A.S. Verkman, J. Biol. Chem. 278, 44826–44831 (2003)

    Google Scholar 

  • C. Stahlhut, F.J. Slack, Cell Cycle 14, 2171–2180 (2015)

    Google Scholar 

  • P.Y. Teo, C. Yang, J.L. Hedrick, et al., Biomaterials 34, 7971–7979 (2013)

    Google Scholar 

  • Y. Tomari, P.D. Zamore, Genes Dev. 19, 517–529 (2005)

    Google Scholar 

  • V. Toncheva, M.A. Wolfert, P.R. Dash, et al., Biochim. Biophys. Acta 1380, 354–368 (1998)

    Google Scholar 

  • V. Torchilin, Eur. J. Pharm. Biopharm. 71, 431–444 (2009)

    Google Scholar 

  • V. Tsouris, M.K. Joo, S.H. Kim, et al., Biotechnol. Adv. 32, 1037–1050 (2014)

    Google Scholar 

  • M.A. van Dongen, C.A. Dougherty, M.M. Banaszak Holl, Biomacromolecules 15, 3215–3234 (2014)

    Google Scholar 

  • D.A. Wang, A.S. Narang, M. Kotb, et al., Biomacromolecules 3, 1197–1207 (2002)

    Google Scholar 

  • T. Wang, G. Wang, X. Zhang, et al., Sci. Rep. 7, 14736 (2017)

    Google Scholar 

  • C.M. Ward, M.L. Read, L.W. Seymour, Blood 97, 2221–2229 (2001)

    Google Scholar 

  • K. Wong, G. Sun, X. Zhang, et al., Bioconjug. Chem. 17, 152–158 (2006)

    Google Scholar 

  • X. Wu, D. Zhong, Q. Gao, et al., Int. J. Med. Sci. 10, 676–682 (2013)

    Google Scholar 

  • S. Yadav, L.E. van Vlerken, S.R. Little, et al., Cancer Chemother. Pharmacol. 63, 711–722 (2009)

    Google Scholar 

  • H. Yogasundaram, M.S. Bahniuk, H.D. Singh, et al., Int. J. Biomater. 2012, 584060 (2012)

    Google Scholar 

  • M. Yu, X. Jie, L. Xu, et al., Biomacromolecules 16, 2588–2598 (2015)

    Google Scholar 

  • Y. Yue, F. Jin, R. Deng, et al., J. Control. Release 152, 143–151 (2011)

    Google Scholar 

  • Y. Zhang, Z. Wang, R.A. Gemeinhart, J. Control. Release 172, 962–974 (2013)

    Google Scholar 

  • C.G. Zhang, W.J. Zhu, Y. Liu, et al., Sci. Rep. 6, 23859 (2016)

    Google Scholar 

  • C. Zheng, L. Niu, J. Yan, et al., Phys. Chem. Chem. Phys. 14, 7352–7359 (2012)

    Google Scholar 

  • L. Zhu, F. Perche, T. Wang, et al., Biomaterials 35, 4213–4222 (2014)

    Google Scholar 

  • T.S. Zimmermann, V. Karsten, A. Chan, et al., Mol. Ther. 25, 71–78 (2017)

    Google Scholar 

  • J.E. Zuckerman, I. Gritli, A. Tolcher, et al., Proc. Natl. Acad. Sci. U. S. A. 111, 11449–11454 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. William Hartner for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, D.F., Torchilin, V.P. Micelle-like nanoparticles as siRNA and miRNA carriers for cancer therapy. Biomed Microdevices 20, 59 (2018). https://doi.org/10.1007/s10544-018-0298-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0298-0

Keywords

Navigation