Skip to main content

Advertisement

Log in

The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The purpose of the study was to detect the effect and possible mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) on the in vitro and in vivo growth of stem cells isolated from primary human breast cancer cells and cell lines MDA-MB-231 and MCF-7. Primary human breast cancer cells and MDA-MB-231 and MCF-7 cells were sorted in vitro using flow cytometry, and the ESA+, CD44+, CD24−/low cells were isolated as breast cancer stem cells (CSCs). The inhibitory effect of hUCMSCs on CSCs was examined using the Cell Counting Kit-8 cell proliferation and soft agar colony formation assay. In vivo tumor inhibition was studied using a severe combined immunodeficient xenograft mouse model transplanted with MDA-MB-231 breast CSCs. The expression of phosphoinositide 3-kinase (PI3K) and AKT was examined in the xenograft tumors using immunohistochemistry. The number of colonies formed by breast CSCs co-cultured with hUCMSCs at the bottom of soft agar was significantly lower than those formed by the control group (P < 0.01). Compared with the control group, the CSCs co-cultured with hUCMSCs showed a higher number of cells in the G2–M phase (P < 0.05) and an increased number of apoptotic cells (P < 0.01). The mice in the medium- and high-concentration hUCMSC treatment groups exhibited clearly reduced tumor volume and tumor weight, compared with the control group (P < 0.01). Compared with the saline group, the xenograft tumor tissues from the mice treated with different concentrations of hUCMSCs showed significantly reduced levels of PI3K and AKT proteins (P < 0.001). In conclusion, hUCMSC significantly inhibited the growth of breast CSCs in vitro and in vivo. The underlying mechanism is likely related to cell cycle arrest, induction of tumor cell apoptosis, and suppressed activities of PI3K and AKT protein kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458:780–783

    Article  PubMed  CAS  Google Scholar 

  2. Xu YL, Sun Q (2010) Headway in resistance to endocrine therapy in breast cancer. J Thorac Dis. 2:171–177

    PubMed  CAS  Google Scholar 

  3. Lv YG, Yu F, Yao Q, Chen JH, Wang L (2010) The role of surviving in diagnosis, prognosis and treatment of breast cancer. J Thorac Dis. 2:100–110

    PubMed  CAS  Google Scholar 

  4. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 22:1330–1337

    Article  PubMed  Google Scholar 

  5. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells. 23:220–229

    Article  PubMed  Google Scholar 

  6. Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S, Bo P, Nussdorfer GG, Parnigotto PP (2006) CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med. 18:1089–1096

    PubMed  CAS  Google Scholar 

  7. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T, Troyer D, Medicetty S (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells. 21:50–60

    Article  PubMed  CAS  Google Scholar 

  8. Xu WT, Bian ZY, Fan QM, Li G, Tang TT (2009) Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett 281:32–41

    Article  PubMed  CAS  Google Scholar 

  9. Ayuzawa R, Doi C, Rachakatla RS, Pyle MM, Maurya DK, Troyer D, Tamura M (2009) Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett 280:31–37

    Article  PubMed  CAS  Google Scholar 

  10. Rachakatla RS, Pyle MM, Ayuzawa R, Edwards SM, Marini FC, Weiss ML, Tamura M, Troyer D (2008) Combination treatment of human umbilical cord matrix stem cell-based interferon-beta gene therapy and 5-fluorouracil significantly reduces growth of metastatic human breast cancer in SCID mouse lungs. Cancer Invest 26:662–670

    Article  PubMed  CAS  Google Scholar 

  11. Kang SG, Jeun SS, Lim JY, Kim SM, Yang YS, Oh WI, Huh PW, Park CK (2008) Cytotoxicity of human umbilical cord blood-derived mesenchymal stem cells against human malignant glioma cells. Childs Nerv Syst. 24:293–302

    Article  PubMed  Google Scholar 

  12. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, Zhang J, Raffeld M, Rogers TB, Stetler-Stevenson W, Frank JA, Reitz M, Finkel T (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203:1235–1247

    Article  PubMed  CAS  Google Scholar 

  13. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells. 24:781–792

    Article  PubMed  CAS  Google Scholar 

  14. Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D, McIntosh KR (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells. 26:2865–2874

    Article  PubMed  CAS  Google Scholar 

  15. Cho PS, Messina DJ, Hirsh EL, Chi N, Goldman SN, Lo DP, Harris IR, Popma SH, Sachs DH, Huang CA (2008) Immunogenicity of umbilical cord tissue derived cells. Blood 111:430–438

    Article  PubMed  CAS  Google Scholar 

  16. Morandi F, Raffaghello L, Bianchi G, Meloni F, Salis A, Millo E, Ferrone S, Barnaba V, Pistoia V (2008) Immunogenicity of human mesenchymal stem cells in HLA-class I restricted T-cell responses against viral or tumor-associated antigens. Stem Cells 26:1275–1287

    Article  PubMed  CAS  Google Scholar 

  17. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  18. Bausero MA, Page DT, Osinaga E, Asea A (2004) Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumour Biol 25:243–251

    Article  PubMed  CAS  Google Scholar 

  19. Dittmer A, Hohlfeld K, Lutzkendorf J, Muller LP, Dittmer J (2009) Human mesenchymal stem cells induce E-cadherin degradation in breast carcinoma spheroids by activating ADAM10. Cell Mol Life Sci 66:3053–3065

    Article  PubMed  CAS  Google Scholar 

  20. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  21. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  22. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R Jr, Badve S, Nakshatri H (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59

    Article  PubMed  Google Scholar 

  23. Norell H, Poschke I, Charo J, Wei WZ, Erskine C, Piechocki MP, Knutson KL, Bergh J, Lidbrink E, Kiessling R (2010) Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Transl Med 8:53

    Article  PubMed  Google Scholar 

  24. Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A, Guo Y, Wu N, De Stanchina E, White J, Gross SS, Ma Y, Varticovski L, Melnick A, Chiosis G (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA 106:8368–8373

    Article  PubMed  CAS  Google Scholar 

  25. Lu YR, Yuan Y, Wang XJ, Wei LL, Chen YN, Cong C, Li SF, Long D, Tan WD, Mao YQ, Zhang J, Li YP, Cheng JQ (2008) The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther 7:245–251

    Article  PubMed  CAS  Google Scholar 

  26. Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW, Kang SK, Lee YS, Kang KS (2009) Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 11:289–298

    Article  PubMed  CAS  Google Scholar 

  27. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  28. Yin D, Woodruff M, Zhang Y, Whaley S, Miao J, Ferslew K, Zhao J, Stuart C (2006) Morphine promotes Jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/AKt/NF-kappaB pathways. J Neuroimmunol 174:101–107

    Article  PubMed  CAS  Google Scholar 

  29. Chua DT, Sham JS, Au GK (2005) A phase II study of docetaxel and cisplatin as first-line chemotherapy in patients with metastatic nasopharyngeal carcinoma. Oral Oncol 41:589–595

    Article  PubMed  CAS  Google Scholar 

  30. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA (2003) Involvement of PI3K/AKT pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17:590–603

    Article  PubMed  CAS  Google Scholar 

  31. Lee SH, Kim HS, Park WS, Kim SY, Lee KY, Kim SH, Lee JY, Yoo NJ (2002) Non-small cell lung cancers frequently express phosphorylated AKT; an immunohistochemical study. APMIS 110:587–592

    Article  PubMed  CAS  Google Scholar 

  32. Tunici P, Bissola L, Lualdi E, Pollo B, Cajola L, Broggi G, Sozzi G, Finocchiaro G (2004) Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma. Mol Cancer 3:25

    Article  PubMed  Google Scholar 

  33. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102:972–980

    Article  PubMed  CAS  Google Scholar 

  34. Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E III, Zhang Y (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104:16158–16163

    Article  PubMed  CAS  Google Scholar 

  35. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C, Schultz PG, Reddy VA (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 106:268–273

    Article  PubMed  CAS  Google Scholar 

  36. Ganta C, Chiyo D, Ayuzawa R, Rachakatla R, Pyle M, Andrews G, Weiss M, Tamura M, Troyer D (2009) Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Res 69:1815–1820

    Article  PubMed  CAS  Google Scholar 

  37. Molloy AP, Martin FT, Dwyer RM, Griffin TP, Murphy M, Barry FP, O’Brien T, Kerin MJ (2009) Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 124:326–332

    Article  PubMed  CAS  Google Scholar 

  38. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD (2008) Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 269:67–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Tianjin support special focus on prevention and treatment of major diseases (No. 08ZCKFSF03200), Tianjin International cooperation resolution multicolor fluorescence in situ hybridization of new technology in cancer research and diagnosis (No. 09ZCZDSF03800), International Cooperation Ministry of Science and Quantitative single-cell analysis in multi-gene cancer research and diagnosis (No. 2010DFB30270). The authors sincerely thank Professor Tao Cheng and Professor Weiping Yuan, from the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China, who provided guidance and technical support for us.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Additional information

Yi Ma and Xiaomeng Hao contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Hao, X., Zhang, S. et al. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat 133, 473–485 (2012). https://doi.org/10.1007/s10549-011-1774-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1774-x

Keywords

Navigation