Skip to main content

Advertisement

Log in

The folate receptor: What does it promise in tissue-targeted therapeutics?

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

For over a decade the folate receptor has been intensively investigated as a means for tumor-specific delivery of a broad range of experimental therapies including several conceptually new treatments. Despite a few set backs in clinical trials, the literature is replete with encouraging in vitro and pre-clinical studies of gynecological and other tumors and more therapeutic approaches are ready for clinical testing. Recent studies have added myelogenous leukemias to the list of candidate cancers for FR-targeted therapies. Each approach faces unique challenges in translation that could be addressed through a mechanistic understanding of the function and expression of the receptor in the appropriate experimental systems and by improvements in the technology. This review discusses FR in the context of positive recent developments in broad areas of FR-targeted therapy and attempts to highlight its potential and the anticipated challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stover, P. J. (2004). Physiology of folate and vitamin B12 in health and disease. Nutrition Reviews, 62, S3–S12, discussion S13.

    Article  PubMed  Google Scholar 

  2. Blom, H. J., Shaw, G. M., den Heijer, M., & Finnell, R. H. (2006). Neural tube defects and folate: Case far from closed. Nature Reviews. Neuroscience, 7, 724–731.

    Article  PubMed  CAS  Google Scholar 

  3. Smulders, Y. M., & Stehouwer, C. D. (2005). Folate metabolism and cardiovascular disease. Seminars in Vascular Medicine, 5, 87–97.

    Article  PubMed  Google Scholar 

  4. Moat, S. J., Lang, D., McDowell, I. F., Clarke, Z. L., Madhavan, A. K., Lewis, M. J., et al. (2004). Folate, homocysteine, endothelial function and cardiovascular disease. Journal of Nutritional Biochemistry, 15, 64–79.

    Article  PubMed  CAS  Google Scholar 

  5. Matherly, L. H., & Goldman, D. I. (2003). Membrane transport of folates. Vitamins and Hormones, 66, 403–456.

    PubMed  CAS  Google Scholar 

  6. Qiu, A., Jansen, M., Sakaris, A., Min, S. H., Chattopadhyay, S., Tsai, E., et al. (2006). Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell, 127, 917–928.

    Article  PubMed  CAS  Google Scholar 

  7. Antony, A. C. (1992). The biological chemistry of folate receptors. Blood, 79, 2807–2820.

    PubMed  CAS  Google Scholar 

  8. Kamen, B. A., & Smith, A. K. (2004). A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Advanced Drug Delivery Reviews, 56, 1085–1097.

    Article  PubMed  CAS  Google Scholar 

  9. Piedrahita, J. A., Oetama, B., Bennett, G. D., van Waes, J., Kamen, B. A., Richardson, J., et al. (1999). Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nature Genetics, 23, 228–232.

    Article  PubMed  CAS  Google Scholar 

  10. Reddy, J. A., Allagadda, V. M., & Leamon, C. P. (2005). Targeting therapeutic and imaging agents to folate receptor positive tumors. Current Pharmaceutical Biotechnology, 6, 131–150.

    Article  PubMed  CAS  Google Scholar 

  11. Elnakat, H., & Ratnam, M. (2004). Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Advanced Drug Delivery Reviews, 56, 1067–1084.

    Article  PubMed  CAS  Google Scholar 

  12. Shen, F., Ross, J. F., Wang, X., & Ratnam, M. (1994). Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry, 33, 1209–1215.

    Article  PubMed  CAS  Google Scholar 

  13. Spiegelstein, O., Eudy, J. D., & Finnell, R. H. (2000). Identification of two putative novel folate receptor genes in humans and mouse. Gene, 258, 117–125.

    Article  PubMed  CAS  Google Scholar 

  14. Ragoussis, J., Senger, G., Trowsdale, J., & Campbell, I. G. (1992). Genomic organization of the human folate receptor genes on chromosome 11q13. Genomics, 14, 423–430.

    Article  PubMed  CAS  Google Scholar 

  15. Shen, F., Wu, M., Ross, J. F., Miller, D., & Ratnam, M. (1995). Folate receptor type gamma is primarily a secretory protein due to lack of an efficient signal for glycosylphosphatidylinositol modification: Protein characterization and cell type specificity. Biochemistry, 34, 5660–5665.

    Article  PubMed  CAS  Google Scholar 

  16. Lacey, S. W., Sanders, J. M., Rothberg, K. G., Anderson, R. G., & Kamen, B. A. (1989). Complementary DNA for the folate binding protein correctly predicts anchoring to the membrane by glycosyl-phosphatidylinositol. Journal of Clinical Investigation, 84, 715–720.

    PubMed  CAS  Google Scholar 

  17. Yan, W., & Ratnam, M. (1995). Preferred sites of glycosylphosphatidylinositol modification in folate receptors and constraints in the primary structure of the hydrophobic portion of the signal. Biochemistry, 34, 14594–14600.

    Article  PubMed  CAS  Google Scholar 

  18. Luhrs, C. A., & Slomiany, B. L. (1989). A human membrane-associated folate binding protein is anchored by a glycosyl-phosphatidylinositol tail. Journal of Biological Chemistry, 264, 21446–21449.

    PubMed  CAS  Google Scholar 

  19. Antony, A. C., Verma, R. S., Unune, A. R., & LaRosa, J. A. (1989). Identification of a Mg2+-dependent protease in human placenta which cleaves hydrophobic folate-binding proteins to hydrophilic forms. Journal of Biological Chemistry, 264, 1911–1914.

    PubMed  CAS  Google Scholar 

  20. Elwood, P. C., Deutsch, J. C., & Kolhouse, J. F. (1991). The conversion of the human membrane-associated folate binding protein (folate receptor) to the soluble folate binding protein by a membrane-associated metalloprotease. Journal of Biological Chemistry, 266, 2346–2353.

    PubMed  CAS  Google Scholar 

  21. Yang, X. Y., Mackins, J. Y., Li, Q. J., & Antony, A. C. (1996). Isolation and characterization of a folate receptor-directed metalloprotease from human placenta. Journal of Biological Chemistry, 271, 11493–11499.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, J., Shen, F., Yan, W., Wu, M., & Ratnam, M. (1997). Proteolysis of the carboxyl-terminal GPI signal independent of GPI modification as a mechanism for selective protein secretion. Biochemistry, 36, 14583–14592.

    Article  PubMed  CAS  Google Scholar 

  23. Ratnam, M., Marquardt, H., Duhring, J. L., & Freisheim, J. H. (1989). Homologous membrane folate binding proteins in human placenta: Cloning and sequence of a cDNA. Biochemistry, 28, 8249–8254.

    Article  PubMed  CAS  Google Scholar 

  24. Shen, F., Wang, H., Zheng, X., & Ratnam, M. (1997). Expression levels of functional folate receptors alpha and beta are related to the number of N-glycosylated sites. Biochemical Journal, 327(Pt 3), 759–764.

    PubMed  CAS  Google Scholar 

  25. Zheng, X., Kelley, K., Elnakat, H., Yan, W., Dorn, T., & Ratnam, M. (2003). mRNA instability in the nucleus due to a novel open reading frame element is a major determinant of the narrow tissue specificity of folate receptor alpha. Molecular and Cellular Biology, 23, 2202–2212.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, X., Shen, F., Freisheim, J. H., Gentry, L. E., & Ratnam, M. (1992). Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochemical Pharmacology, 44, 1898–1901.

    Article  PubMed  CAS  Google Scholar 

  27. Maziarz, K. M., Monaco, H. L., Shen, F., & Ratnam, M. (1999). Complete mapping of divergent amino acids responsible for differential ligand binding of folate receptors alpha and beta. Journal of Biological Chemistry, 274, 11086–11091.

    Article  PubMed  CAS  Google Scholar 

  28. Monaco, H. L. (1997). Crystal structure of chicken riboflavin-binding protein. EMBO Journal, 16, 1475–1483.

    Article  PubMed  CAS  Google Scholar 

  29. Edidin, M. (2003). The state of lipid rafts: From model membranes to cells. Annual Review of Biophysics and Biomolecular Structure, 32, 257–283.

    Article  PubMed  CAS  Google Scholar 

  30. Vereb, G., Szollosi, J., Matko, J., Nagy, P., Farkas, T., Vigh, L., et al. (2003). Dynamic, yet structured: The cell membrane three decades after the Singer–Nicolson model. Proceedings of the National Academy of Sciences of the United States of America, 100, 8053–8058.

    Article  PubMed  CAS  Google Scholar 

  31. Sabharanjak, S., Sharma, P., Parton, R. G., & Mayor, S. (2002). GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Developmental Cell, 2, 411–423.

    Article  PubMed  CAS  Google Scholar 

  32. Nichols, B. J., Kenworthy, A. K., Polishchuk, R. S., Lodge, R., Roberts, T. H., Hirschberg, K., et al. (2001). Rapid cycling of lipid raft markers between the cell surface and Golgi complex. Journal of Cell Biology, 153, 529–541.

    Article  PubMed  CAS  Google Scholar 

  33. Wu, M., Fan, J., Gunning, W., & Ratnam, M. (1997). Clustering of GPI-anchored folate receptor independent of both cross-linking and association with caveolin. Journal of Membrane Biology, 159, 137–147.

    Article  PubMed  CAS  Google Scholar 

  34. Friedrichson, T., & Kurzchalia, T. V. (1998). Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature, 394, 802–805.

    Article  PubMed  CAS  Google Scholar 

  35. Varma, R., & Mayor, S. (1998). GPI-anchored proteins are organized in submicron domains at the cell surface. Nature, 394, 798–801.

    Article  PubMed  CAS  Google Scholar 

  36. Birn, H., Selhub, J., & Christensen, E. I. (1993). Internalization and intracellular transport of folate-binding protein in rat kidney proximal tubule. American Journal of Physiology, 264, C302–310.

    PubMed  CAS  Google Scholar 

  37. Hjelle, J. T., Christensen, E. I., Carone, F. A., & Selhub, J. (1991). Cell fractionation and electron microscope studies of kidney folate-binding protein. American Journal of Physiology, 260, C338–346.

    PubMed  CAS  Google Scholar 

  38. Mayor, S., Sabharanjak, S., & Maxfield, F. R. (1998). Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO Journal, 17, 4626–4638.

    Article  PubMed  CAS  Google Scholar 

  39. Kamen, B. A., Wang, M. T., Streckfuss, A. J., Peryea, X., & Anderson, R. G. (1988). Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles. Journal of Biological Chemistry, 263, 13602–13609.

    PubMed  CAS  Google Scholar 

  40. Kamen, B. A., Johnson, C. A., Wang, M. T., & Anderson, R. G. (1989). Regulation of the cytoplasmic accumulation of 5-methyltetrahydrofolate in MA104 cells is independent of folate receptor regulation. Journal of Clinical Investigation, 84, 1379–1386.

    PubMed  CAS  Google Scholar 

  41. Rothberg, K. G., Ying, Y. S., Kolhouse, J. F., Kamen, B. A., & Anderson, R. G. (1990). The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. Journal of Cell Biology, 110, 637–649.

    Article  PubMed  CAS  Google Scholar 

  42. Ritter, T. E., Fajardo, O., Matsue, H., Anderson, R. G., & Lacey, S. W. (1995). Folate receptors targeted to clathrin-coated pits cannot regulate vitamin uptake. Proceedings of the National Academy of Sciences of the United States of America, 92, 3824–3828.

    Article  PubMed  CAS  Google Scholar 

  43. Chang, W. J., Rothberg, K. G., Kamen, B. A., & Anderson, R. G. (1992). Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. Journal of Cell Biology, 118, 63–69.

    Article  PubMed  CAS  Google Scholar 

  44. Leamon, C. P., & Low, P. S. (1991). Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 88, 5572–5576.

    Article  PubMed  CAS  Google Scholar 

  45. Leamon, C. P., & Low, P. S. (1993). Membrane folate-binding proteins are responsible for folate-protein conjugate endocytosis into cultured cells. Biochemical Journal, 291(Pt 3), 855–860.

    PubMed  CAS  Google Scholar 

  46. Turek, J. J., Leamon, C. P., & Low, P. S. (1993). Endocytosis of folate-protein conjugates: Ultrastructural localization in KB cells. Journal of Cell Science, 106(Pt 1), 423–430.

    PubMed  CAS  Google Scholar 

  47. Rijnboutt, S., Jansen, G., Posthuma, G., Hynes, J. B., Schornagel, J. H., & Strous, G. J. (1996). Endocytosis of GPI-linked membrane folate receptor-alpha. Journal of Cell Biology, 132, 35–47.

    Article  PubMed  CAS  Google Scholar 

  48. Leamon, C. P., & Low, P. S. (2001). Folate-mediated targeting: From diagnostics to drug and gene delivery. Drug Discovery Today, 6, 44–51.

    Article  PubMed  CAS  Google Scholar 

  49. Miotti, S., Canevari, S., Menard, S., Mezzanzanica, D., Porro, G., Pupa, S. M., et al. (1987). Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. International Journal of Cancer, 39, 297–303.

    Article  CAS  Google Scholar 

  50. Weitman, S. D., Weinberg, A. G., Coney, L. R., Zurawski, V. R., Jennings, D. S., & Kamen, B. A. (1992). Cellular localization of the folate receptor: Potential role in drug toxicity and folate homeostasis. Cancer Research, 52, 6708–6711.

    PubMed  CAS  Google Scholar 

  51. Chancy, C. D., Kekuda, R., Huang, W., Prasad, P. D., Kuhnel, J. M., Sirotnak, F. M., et al. (2000). Expression and differential polarization of the reduced-folate transporter-1 and the folate receptor alpha in mammalian retinal pigment epithelium. Journal of Biological Chemistry, 275, 20676–20684.

    Article  PubMed  CAS  Google Scholar 

  52. Toffoli, G., Cernigoi, C., Russo, A., Gallo, A., Bagnoli, M., & Boiocchi, M. (1997). Overexpression of folate binding protein in ovarian cancers. International Journal of Cancer, 74, 193–198.

    Article  CAS  Google Scholar 

  53. Ross, J. F., Chaudhuri, P. K., & Ratnam, M. (1994). Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer, 73, 2432–2443.

    Article  PubMed  CAS  Google Scholar 

  54. Bueno, R., Appasani, K., Mercer, H., Lester, S., & Sugarbaker, D. (2001). The alpha folate receptor is highly activated in malignant pleural mesothelioma. Journal of Thoracic and Cardiovascular Surgery, 121, 225–233.

    Article  PubMed  CAS  Google Scholar 

  55. Evans, C. O., Young, A. N., Brown, M. R., Brat, D. J., Parks, J. S., Neish, A. S., et al. (2001). Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. Journal of Clinical Endocrinology and Metabolism, 86, 3097–3107.

    Article  PubMed  CAS  Google Scholar 

  56. Weitman, S. D., Frazier, K. M., & Kamen, B. A. (1994). The folate receptor in central nervous system malignancies of childhood. Journal of Neuro-oncology, 21, 107–112.

    Article  PubMed  CAS  Google Scholar 

  57. Wu, M., Gunning, W., & Ratnam, M. (1999). Expression of folate receptor type alpha in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiology, Biomarkers & Prevention, 8, 775–782.

    CAS  Google Scholar 

  58. Buist, M. R., Molthoff, C. F., Kenemans, P., & Meijer, C. J. (1995). Distribution of OV-TL 3 and MOv18 in normal and malignant ovarian tissue. Journal of Clinical Pathology, 48, 631–636.

    PubMed  CAS  Google Scholar 

  59. Figini, M., Ferri, R., Mezzanzanica, D., Bagnoli, M., Luison, E., Miotti, S., et al. (2003). Reversion of transformed phenotype in ovarian cancer cells by intracellular expression of anti folate receptor antibodies. Gene Therapy, 10, 1018–1025.

    Article  PubMed  CAS  Google Scholar 

  60. Wang, H., Zheng, X., Behm, F. G., & Ratnam, M. (2000). Differentiation-independent retinoid induction of folate receptor type beta, a potential tumor target in myeloid leukemia. Blood, 96, 3529–3536.

    PubMed  CAS  Google Scholar 

  61. Ross, J. F., Wang, H., Behm, F. G., Mathew, P., Wu, M., Booth, R., et al. (1999). Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer, 85, 348–357.

    Article  PubMed  CAS  Google Scholar 

  62. Reddy, J. A., Haneline, L. S., Srour, E. F., Antony, A. C., Clapp, D. W., & Low, P. S. (1999). Expression and functional characterization of the beta-isoform of the folate receptor on CD34(+) cells. Blood, 93, 3940–3948.

    PubMed  CAS  Google Scholar 

  63. Nakashima-Matsushita, N., Homma, T., Yu, S., Matsuda, T., Sunahara, N., Nakamura, T., et al. (1999). Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis and Rheumatism, 42, 1609–1616.

    Article  PubMed  CAS  Google Scholar 

  64. Sun, X. L., Murphy, B. R., Li, Q. J., Gullapalli, S., Mackins, J., Jayaram, H. N., et al. (1995). Transduction of folate receptor cDNA into cervical carcinoma cells using recombinant adeno-associated virions delays cell proliferation in vitro and in vivo. Journal of Clinical Investigation, 96, 1535–1547.

    PubMed  CAS  Google Scholar 

  65. Pan, X. Q., Zheng, X., Shi, G., Wang, H., Ratnam, M., & Lee, R. J. (2002). Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood, 100, 594–602.

    Article  PubMed  CAS  Google Scholar 

  66. Westerhof, G. R., Schornagel, J. H., Kathmann, I., Jackman, A. L., Rosowsky, A., Forsch, R. A., et al. (1995). Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: Correlates of molecular-structure and biological activity. Molecular Pharmacology, 48, 459–471.

    PubMed  CAS  Google Scholar 

  67. Theti, D. S., Bavetsias, V., Skelton, L. A., Titley, J., Gibbs, D., Jansen, G., et al. (2003). Selective delivery of CB300638, a cyclopenta[g]quinazoline-based thymidylate synthase inhibitor into human tumor cell lines overexpressing the alpha-isoform of the folate receptor. Cancer Research, 63, 3612–3618.

    PubMed  CAS  Google Scholar 

  68. Bavetsias, V., Marriott, J. H., Melin, C., Kimbell, R., Matusiak, Z. S., Boyle, F. T., et al. (2000). Design and synthesis of Cyclopenta[g]quinazoline-based antifolates as inhibitors of thymidylate synthase and potential antitumor agents. Journal of Medicinal Chemistry, 43, 1910–1926.

    Article  PubMed  CAS  Google Scholar 

  69. Gibbs, D. D., Theti, D. S., Wood, N., Green, M., Raynaud, F., Valenti, M., et al. (2005). BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Research, 65, 11721–11728.

    Article  PubMed  CAS  Google Scholar 

  70. Jackman, A. L., Theti, D. S., & Gibbs, D. D. (2004). Antifolates targeted specifically to the folate receptor. Advanced Drug Delivery Reviews, 56, 1111–1125.

    Article  PubMed  CAS  Google Scholar 

  71. Lee, J. W., Lu, J. Y., Low, P. S., & Fuchs, P. L. (2002). Synthesis and evaluation of taxol-folic acid conjugates as targeted antineoplastics. Bioorganic & Medicinal Chemistry, 10, 2397–2414.

    Article  CAS  Google Scholar 

  72. Aronov, O., Horowitz, A. T., Gabizon, A., & Gibson, D. (2003). Folate-targeted PEG as a potential carrier for carboplatin analogs. Synthesis and in vitro studies. Bioconjugate Chemistry, 14, 563–574.

    Article  PubMed  CAS  Google Scholar 

  73. Atkinson, S. F., Bettinger, T., Seymour, L. W., Behr, J. P., & Ward, C. M. (2001). Conjugation of folate via gelonin carbohydrate residues retains ribosomal-inactivating properties of the toxin and permits targeting to folate receptor positive cells. Journal of Biological Chemistry, 276, 27930–27935.

    Article  PubMed  CAS  Google Scholar 

  74. Mathias, C. J., Hubers, D., Low, P. S., & Green, M. A. (2000). Synthesis of [(99m)Tc]DTPA-folate and its evaluation as a folate-receptor-targeted radiopharmaceutical. Bioconjugate Chemistry, 11, 253–257.

    Article  PubMed  CAS  Google Scholar 

  75. Mathias, C. J., Wang, S., Waters, D. J., Turek, J. J., Low, P. S., & Green, M. A. (1998). Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. Journal of Nuclear Medicine, 39, 1579–1585.

    PubMed  CAS  Google Scholar 

  76. Wang, S., Luo, J., Lantrip, D. A., Waters, D. J., Mathias, C. J., Green, M. A., et al. (1997). Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjugate Chemistry, 8, 673–679.

    Article  PubMed  CAS  Google Scholar 

  77. Leamon, C. P., Parker, M. A., Vlahov, I. R., Xu, L. C., Reddy, J. A., Vetzel, M., et al. (2002). Synthesis and biological evaluation of EC20: A new folate-derived, (99m)Tc-based radiopharmaceutical. Bioconjugate Chemistry, 13, 1200–1210.

    Article  PubMed  CAS  Google Scholar 

  78. Reddy, J. A., Xu, L. C., Parker, N., Vetzel, M., & Leamon, C. P. (2004). Preclinical evaluation of (99m)Tc-EC20 for imaging folate receptor-positive tumors. Journal of Nuclear Medicine, 45, 857–866.

    PubMed  CAS  Google Scholar 

  79. Guo, W., Hinkle, G. H., & Lee, R. J. (1999). 99mTc-HYNIC-folate: A novel receptor-based targeted radiopharmaceutical for tumor imaging. Journal of Nuclear Medicine, 40, 1563–1569.

    PubMed  CAS  Google Scholar 

  80. Wang, S., Lee, R. J., Mathias, C. J., Green, M. A., & Low, P. S. (1996). Synthesis, purification, and tumor cell uptake of 67Ga-deferoxamine-folate, a potential radiopharmaceutical for tumor imaging. Bioconjugate Chemistry, 7, 56–62.

    Article  PubMed  CAS  Google Scholar 

  81. Mathias, C. J., Wang, S., Low, P. S., Waters, D. J., & Green, M. A. (1999). Receptor-mediated targeting of 67Ga-deferoxamine-folate to folate-receptor-positive human KB tumor xenografts. Nuclear Medicine and Biology, 26, 23–25.

    Article  PubMed  CAS  Google Scholar 

  82. Trump, D. P., Mathias, C. J., Yang, Z., Low, P. S., Marmion, M., & Green, M. A. (2002). Synthesis and evaluation of 99mTc(CO)(3)-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nuclear Medicine and Biology, 29, 569–573.

    Article  PubMed  CAS  Google Scholar 

  83. Ke, C. Y., Mathias, C. J., & Green, M. A. (2004). Folate-receptor-targeted radionuclide imaging agents. Advanced Drug Delivery Reviews, 56, 1143–1160.

    Article  PubMed  CAS  Google Scholar 

  84. Siegel, B. A., Dehdashti, F., Mutch, D. G., Podoloff, D. A., Wendt, R., Sutton, G. P., et al. (2003). Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: Initial clinical results. Journal of Nuclear Medicine, 44, 700–707.

    PubMed  CAS  Google Scholar 

  85. Lee, R. J., & Low, P. S. (1994). Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. Journal of Biological Chemistry, 269, 3198–3204.

    PubMed  CAS  Google Scholar 

  86. Lee, R. J., & Low, P. S. (1995). Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochimica et Biophysica Acta, 1233, 134–144.

    Article  PubMed  Google Scholar 

  87. Pan, X. Q., Wang, H., & Lee, R. J. (2003). Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharmaceutical Research, 20, 417–422.

    Article  PubMed  CAS  Google Scholar 

  88. Goren, D., Horowitz, A. T., Tzemach, D., Tarshish, M., Zalipsky, S., & Gabizon, A. (2000). Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clinical Cancer Research, 6, 1949–1957.

    PubMed  CAS  Google Scholar 

  89. Wang, S., Lee, R. J., Cauchon, G., Gorenstein, D. G., & Low, P. S. (1995). Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proceedings of the National Academy of Sciences of the United States of America, 92, 3318–3322.

    Article  PubMed  CAS  Google Scholar 

  90. Lee, R. J., & Huang, L. (1996). Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. Journal of Biological Chemistry, 271, 8481–8487.

    Article  PubMed  CAS  Google Scholar 

  91. Gosselin, M. A., Guo, W., & Lee, R. J. (2002). Incorporation of reversibly cross-linked polyplexes into LPDII vectors for gene delivery. Bioconjugate Chemistry, 13, 1044–1053.

    Article  PubMed  CAS  Google Scholar 

  92. Gabizon, A., Shmeeda, H., Horowitz, A. T., & Zalipsky, S. (2004). Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Advanced Drug Delivery Reviews, 56, 1177–1192.

    Article  PubMed  CAS  Google Scholar 

  93. Leamon, C. P., Cooper, S. R., & Hardee, G. E. (2003). Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: Evaluation in vitro and in vivo. Bioconjugate Chemistry, 14, 738–747.

    Article  PubMed  CAS  Google Scholar 

  94. Reddy, J. A., & Low, P. S. (2000). Enhanced folate receptor mediated gene therapy using a novel pH-sensitive lipid formulation. Journal of Controlled Release, 64, 27–37.

    Article  PubMed  CAS  Google Scholar 

  95. Choi, H., Choi, S. R., Zhou, R., Kung, H. F., & Chen, I. W. (2004). Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Academic Radiology, 11, 996–1004.

    Article  PubMed  Google Scholar 

  96. Sonvico, F., Mornet, S., Vasseur, S., Dubernet, C., Jaillard, D., Degrouard, J., et al. (2005). Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chemistry, 16, 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  97. Rossin, R., Pan, D., Qi, K., Turner, J. L., Sun, X., Wooley, K. L., et al. (2005). 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: Synthesis, radiolabeling, and biologic evaluation. Journal of Nuclear Medicine, 46, 1210–1218.

    PubMed  Google Scholar 

  98. Santra, S., Liesenfeld, B., Dutta, D., Chatel, D., Batich, C. D., Tan, W., et al. (2005). Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. Journal of Nanoscience and Nanotechnology, 5, 899–904.

    Article  PubMed  CAS  Google Scholar 

  99. Bharali, D. J., Lucey, D. W., Jayakumar, H., Pudavar, H. E., & Prasad, P. N. (2005). Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. Journal of the American Chemical Society, 127, 11364–11371.

    Article  PubMed  CAS  Google Scholar 

  100. Kam, N. W., O’Connell, M., Wisdom, J. A., & Dai, H. (2005). Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences of the United States of America, 102, 11600–11605.

    Article  PubMed  CAS  Google Scholar 

  101. Zheng, G., Chen, J., Li, H., & Glickson, J. D. (2005). Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proceedings of the National Academy of Sciences of the United States of America, 102, 17757–17762.

    Article  PubMed  CAS  Google Scholar 

  102. Coney, L. R., Tomassetti, A., Carayannopoulos, L., Frasca, V., Kamen, B. A., Colnaghi, M. I., et al. (1991). Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Research, 51, 6125–6132.

    PubMed  CAS  Google Scholar 

  103. Kranz, D. M., Patrick, T. A., Brigle, K. E., Spinella, M. J., & Roy, E. J. (1995). Conjugates of folate and anti-T-cell-receptor antibodies specifically target folate-receptor-positive tumor cells for lysis. Proceedings of the National Academy of Sciences of the United States of America, 92, 9057–9061.

    Article  PubMed  CAS  Google Scholar 

  104. Roy, E. J., Cho, B. K., Rund, L. A., Patrick, T. A., & Kranz, D. M. (1998). Targeting T cells against brain tumors with a bispecific ligand-antibody conjugate. International Journal of Cancer, 76, 761–766.

    Article  CAS  Google Scholar 

  105. Lu, Y., & Low, P. S. (2002). Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunology and Immunotherapy, 51, 153–162.

    Article  PubMed  CAS  Google Scholar 

  106. Ratnam, M., Hao, H., Zheng, X., Wang, H., Qi, H., Lee, R., et al. (2003). Receptor induction and targeted drug delivery: A new antileukaemia strategy Expert Opinion on Biological Therapy, 3, 563–574.

    Article  PubMed  CAS  Google Scholar 

  107. Frankel, A. E., Sievers, E. L., & Scheinberg, D. A. (2000). Cell surface receptor-targeted therapy of acute myeloid leukemia: A review. Cancer Biotherapy & Radiopharmaceuticals, 15, 459–476.

    Article  CAS  Google Scholar 

  108. Naito, K., Takeshita, A., Shigeno, K., Nakamura, S., Fujisawa, S., Shinjo, K., et al. (2000). Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia, 14, 1436–1443.

    Article  PubMed  CAS  Google Scholar 

  109. Druker, B. J., Talpaz, M., Resta, D. J., Peng, B., Buchdunger, E., Ford, J. M., et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. New England Journal of Medicine, 344, 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  110. Zhong, R. K., van de Winkel, J. G., Thepen, T., Schultz, L. D., & Ball, E. D. (2001). Cytotoxicity of anti-CD64-ricin a chain immunotoxin against human acute myeloid leukemia cells in vitro and in SCID mice. Journal of Hematotherapy and Stem Cell Research, 10, 95–105.

    Article  PubMed  CAS  Google Scholar 

  111. Flavell, D. J., Boehm, D. A., Noss, A., Warnes, S. L., & Flavell, S. U. (2001). Therapy of human T-cell acute lymphoblastic leukaemia with a combination of anti-CD7 and anti-CD38-SAPORIN immunotoxins is significantly better than therapy with each individual immunotoxin. British Journal of Cancer, 84, 571–578.

    Article  PubMed  CAS  Google Scholar 

  112. Kreitman, R. J., Wilson, W. H., White, J. D., Stetler-Stevenson, M., Jaffe, E. S., Giardina, S., et al. (2000). Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. Journal of Clinical Oncology, 18, 1622–1636.

    PubMed  CAS  Google Scholar 

  113. Pagliaro, L. C., Liu, B., Munker, R., Andreeff, M., Freireich, E. J., Scheinberg, D. A., et al. (1998). Humanized M195 monoclonal antibody conjugated to recombinant gelonin: An anti-CD33 immunotoxin with antileukemic activity. Clinical Cancer Research, 4, 1971–1976.

    PubMed  CAS  Google Scholar 

  114. Kreitman, R. J., & Pastan, I. (1997). Recombinant toxins containing human granulocyte-macrophage colony-stimulating factor and either pseudomonas exotoxin or diphtheria toxin kill gastrointestinal cancer and leukemia cells. Blood, 90, 252–259.

    PubMed  CAS  Google Scholar 

  115. Wang, Y., Eksborg, S., Lewensohn, R., Lindberg, A., & Liliemark, E. (1999). In vitro cellular accumulation and cytotoxicity of liposomal and conventional formulations of daunorubicin and doxorubicin in resistant K562 cells. Anti-cancer Drugs, 10, 921–928.

    Article  PubMed  CAS  Google Scholar 

  116. Ma, D. D., & Wei, A. Q. (1996). Enhanced delivery of synthetic oligonucleotides to human leukaemic cells by liposomes and immunoliposomes. Leukemia Research, 20, 925–930.

    Article  PubMed  CAS  Google Scholar 

  117. Lopes de Menezes, D. E., Pilarski, L. M., Belch, A. R., & Allen, T. M. (2000). Selective targeting of immunoliposomal doxorubicin against human multiple myeloma in vitro and ex vivo. Biochimica et Biophysica Acta, 1466, 205–220.

    Article  PubMed  CAS  Google Scholar 

  118. Suzuki, S., Inoue, K., Hongoh, A., Hashimoto, Y., & Yamazoe, Y. (1997). Modulation of doxorubicin resistance in a doxorubicin-resistant human leukaemia cell by an immunoliposome targeting transferring receptor. British Journal of Cancer, 76, 83–89.

    PubMed  CAS  Google Scholar 

  119. Ohta, S., Igarashi, S., Honda, A., Sato, S., & Hanai, N. (1993). Cytotoxicity of adriamycin-containing immunoliposomes targeted with anti-ganglioside monoclonal antibodies. Anticancer Research, 13, 331–336.

    PubMed  CAS  Google Scholar 

  120. Kelley, K. M., Rowan, B. G., & Ratnam, M. (2003). Modulation of the folate receptor alpha gene by the estrogen receptor: Mechanism and implications in tumor targeting. Cancer Research, 63, 2820–2828.

    PubMed  CAS  Google Scholar 

  121. Tran, T., Shatnawi, A., Zheng, X., Kelley, K. M., & Ratnam, M. (2005). Enhancement of folate receptor alpha expression in tumor cells through the glucocorticoid receptor: A promising means to improved tumor detection and targeting. Cancer Research, 65, 4431–4441.

    Article  PubMed  CAS  Google Scholar 

  122. Hao, H., Qi, H., & Ratnam, M. (2003). Modulation of the folate receptor type beta gene by coordinate actions of retinoic acid receptors at activator Sp1/ets and repressor AP-1 sites. Blood, 101, 4551–4560.

    Article  PubMed  CAS  Google Scholar 

  123. Qi, H., & Ratnam, M. (2006). Synergistic induction of folate receptor beta by all-trans retinoic acid and histone deacetylase inhibitors in acute myelogenous leukemia cells: Mechanism and utility in enhancing selective growth inhibition by antifolates. Cancer Research, 66, 5875–5882.

    Article  PubMed  CAS  Google Scholar 

  124. Christensen, E. I., Birn, H., Verroust, P., & Moestrup, S. K. (1998) Membrane receptors for endocytosis in the renal proximal tubule. Int. Rev. Cytol., 180, 237–284.

    Article  PubMed  CAS  Google Scholar 

  125. Lee, R. J., & Low, P. S. (1994) Delivery of liposomes into cultured KB cells via Folate receptor-mediated endocytosis. J. Biol. Chem. 269, 3198–3204.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manohar Ratnam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, M.D., Ratnam, M. The folate receptor: What does it promise in tissue-targeted therapeutics?. Cancer Metastasis Rev 26, 141–152 (2007). https://doi.org/10.1007/s10555-007-9048-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9048-0

Keywords

Navigation