Skip to main content
Log in

Protective Effects of Aliskiren on Atrial Ionic Remodeling in a Canine Model of Rapid Atrial Pacing

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Aliskiren inhibits the activation of the renin-angiotensin system. Here, we investigated the effects of aliskiren on chronic atrial iron remodeling in the experimental canine model of rapid atrial pacing.

Methods

Twenty-eight dogs were assigned to sham (S), control paced (C), paced + aliskiren (10 mg Kg−1 d−1, A1), and paced + aliskiren (20 mg Kg−1 d−1, A2) groups. Rapid atrial pacing at 500 bpm was maintained for 2 weeks, while group S was not paced. Levels of serum angiotensin-converting enzyme and angiotensin II after pacing were determined by ELISA. Whole-cell patch-clamp technique, western blot, and RT-PCR were applied to assess atrial ionic remodeling.

Results

The density of I CaL and I Na currents (pA/pF) was significantly lower in group C compared with group S (I CaL: −4.09 ± 1.46 vs. −6.12 ± 0.58,P < 0.05; I Na: 30.48 ± 6.08 vs. 46.31 ± 4.73, P < 0.05). However, the high dose of aliskiren elevated the density of I CaL and I Na currents compared with group C (I CaL: −6.23 ± 1.35 vs. −4.09 ± 1.46, P < 0.05; I Na: 58.62 ± 16.17 vs. 30.48 ± 6.08, P < 0.01). The relative mRNA and protein expression levels of Cav1.2 and Nav1.5α were downregulated in group C respectively (Cav1.2: 0.46 ± 0.08; Nav1.5α: 0.52 ± 0.08, P < 0.01; Cav1.2: 0.31 ± 0.03; Nav1.5α: 0.41 ± 0.04, P < 0.01;), but were upregulated by aliskiren.

Conclusions

Aliskiren has protective effects on atrial tachycardia-induced atrial ionic remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for management of atrial fibrillation: the task force for the management of atrial fibrillation of the european society of cardiology (ESC). Eur Heart J. 2010;31:2369–429.

    Article  PubMed  Google Scholar 

  2. Nattel S. From guidelines to bench: implications of unresolved clinical issues for basic investigations of atrial fibrillation mechanisms. Can J Cardiol. 2011;27:19–26.

    Article  PubMed  Google Scholar 

  3. Liu E, Yang S, Xu Z, Li J, Yang W, Li G. Angiotensin-(1–7) prevents atrial fibrosis and atrial fibrillation in long-term atrial tachycardia dogs. Regul Pept. 2010;162:73–8.

    Article  CAS  PubMed  Google Scholar 

  4. Liu E, Xu Z, Li J, Yang S, Yang W, Li G. Enalapril, irbesartan, and angiotensin-(1–7) prevent atrial tachycardia-induced ionic remodeling. Int J Cardiol. 2011;146:364–70.

    Article  PubMed  Google Scholar 

  5. Rogart RB, Cribbs LL, Muglia LK, Kephart DD, Kaiser MW. Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. Proc Natl Acad Sci U S A. 1989;86:8170–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Villamil A, Chrysant SG, Calhoun D, et al. Renin inhibition with aliskiren provides additive antihypertensive efficacy when used in combination with hydrochlorothiazide. J Hypertens. 2007;25:217–26.

    Article  CAS  PubMed  Google Scholar 

  7. Cohen NC. Structure-based drug design and the discovery of aliskiren (Tekturna): perseverance and creativity to overcome a R&D pipeline challenge. Chem Biol Drug Des. 2007;70:557–65.

    Article  CAS  PubMed  Google Scholar 

  8. Brown MJ. Aliskiren. Circulation. 2008;118:773–84.

    Article  CAS  PubMed  Google Scholar 

  9. Fisher ND, Jan Danser AH, Nussberger J, Dole WP, Hollenberg NK. Renal and hormonal responses to direct renin inhibition with aliskiren in healthy humans. Circulation. 2008;117:3199–205.

    Article  CAS  PubMed  Google Scholar 

  10. Stanton A. Now that we have a direct renin inhibitor, what should we do with it? Curr Hypertens Rep. 2008;10:194–200.

    Article  CAS  PubMed  Google Scholar 

  11. Feldman DL. New insights into the renoprotective actions of the rennin inhibitor aliskiren in experimental renal disease. Hypertens Res. 2010;33:279–87.

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen G. The (pro)renin receptor: pathophysiological roles in cardiovascular and renal pathology. Curr Opin Nephrol Hypertens. 2007;16:129–33.

    Article  CAS  PubMed  Google Scholar 

  13. Nattel S, Li D. Ionic remodeling in the heart: pathophysiological significance and new therapeutic opportunities for atrial fibrillation. Circ Res. 2000;87:440–7.

    Article  CAS  PubMed  Google Scholar 

  14. Yue L, Feng J, Li GR, Nattel S. Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. Am J Physiol. 1996;270:H2157–68.

    CAS  PubMed  Google Scholar 

  15. Li D, Melnyk P, Feng J, et al. Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation. 2000;101:2631–8.

    Article  CAS  PubMed  Google Scholar 

  16. Gramley F, Himmrich E, Mollnau H, Theis C, Hammwohner M, Goette A. Recent advances in the pharmacological treatment of cardiac arrythmias. Drugs Today (Barc). 2009;45:807–24.

    CAS  PubMed  Google Scholar 

  17. Goette A, Staack T, Röcken C, et al. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol. 2000;35:1669–77.

    Article  CAS  PubMed  Google Scholar 

  18. Goette A, Arndt M, Röcken C, et al. Regulation of Angiotensin II Receptor Subtypes During Atrial Fibrillation in Humans. Circulation. 2000;101:2678–81.

    Article  CAS  PubMed  Google Scholar 

  19. Kumagai K, Nakashima H, Urata H, et al. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol. 2003;41:2198–203.

    Google Scholar 

  20. Zhang Y, Zhang P, Mu Y, et al. The role of renin-angiotensin system blockade therapy in the prevention of atrial Fibrillation: A meta-analysis of randomized controlled trials. Clin Pharmacol Ther. 2010;88:521–31.

    Article  CAS  PubMed  Google Scholar 

  21. Müller DN, Luft FC. Direct renin inhibition with aliskiren in hypertension and target organ damage. Clin J Am Soc Nephrol. 2006;1:221–8.

    Article  PubMed  Google Scholar 

  22. The GISSI-AF Investigators, Disertori M, Latini R, et al. Valsartan for prevention of recurrent atrial fibrillation. N Engl J Med. 2009;360:1606–17.

    Article  PubMed  Google Scholar 

  23. Nakashima H, Kumagai K. Reverse-remodeling effects of angiotensin II type 1 receptor blocker in a canine atrial fibrillation model. Circ J. 2007;71:1977–82.

    Article  CAS  PubMed  Google Scholar 

  24. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res. 1997;81:512–25.

    Article  CAS  PubMed  Google Scholar 

  25. Brundel BJ, van Gelder IC, Henning RH, et al. Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc Res. 1999;42:443–54.

    Article  CAS  PubMed  Google Scholar 

  26. Goette A, Honeycutt C, Langberg JJ. Electrical remodeling in atrial fibrillation. Time course and mechanisms. Circulation. 1996;94:2968–74.

    Article  CAS  PubMed  Google Scholar 

  27. Ausma J, Dispersyn GD, Duimel H, Thone F, Ver Donck L, Allessie MA, et al. Changes in ultrastructural calcium distribution in goat atria during atrial fibrillation. J Mol Cell Cardiol. 2000;32:355–64.

    Article  CAS  PubMed  Google Scholar 

  28. Sun H, Chartier D, Leblanc N, Nattel S. Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes. Cardiovasc Res. 2001;49:751–61.

    Article  CAS  PubMed  Google Scholar 

  29. Wilde AA, Brugada R. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac sodium channel. Circ Res. 2011;108:884–97.

    Article  CAS  PubMed  Google Scholar 

  30. Darbar D, Kannankeril PJ, Donahue BS, et al. Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation. 2008;117:1927–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Fischer R, Dechend R, Qadri F, et al. Dietary n-3 polyunsaturated fatty acids and direct renin inhibition improve electrical remodeling in a model of high human renin hypertension. Hypertension. 2008;51:540–6.

    Article  CAS  PubMed  Google Scholar 

  32. Solomon SD, Appelbaum E, Manning WJ, et al. Effect of the direct rennin inhibitor aliskiren, the angiotensin receptor blocker losartan, or both on left ventricular mass in patients with hypertension and left ventricular hypertrophy. Circulation. 2009;119:530–7.

    Article  CAS  PubMed  Google Scholar 

  33. Shang LL, Sanyal S, Pfahnl AE, et al. NF-kappaB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II. Am J Physiol Cell Physiol. 2008;294:C372–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bkaily G, Sculptoreanu A, Wang S, et al. Angiotensin II-induced increase of T-type Ca2+ current and decrease of L-type Ca2+ current in heart cells. Peptides. 2005;26:1410–7.

    Article  CAS  PubMed  Google Scholar 

  35. von Lewinski D, Kockskämper J, Rübertus SU, et al. Direct pro-arrhythmogenic effects of angiotensin II can be suppressed by AT1 receptor blockade in human atrial myocardium. Eur J Heart Fail. 2008;10:1172–6.

    Article  Google Scholar 

  36. Kumagai K, Nakashima H, Urata H, Gondo N, Arakawa K, Saku K. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol. 2003;41:2197–204.

    Article  CAS  PubMed  Google Scholar 

  37. Ye Y, Qian J, Castillo AC, Perez-Polo JR, Birnbaum Y. Aliskiren and valsartan reduce myocardial AT1 receptor expression and limit myocardial infarct size in diabetic mice. Cardiovasc Drugs Ther. 2011;25:505–15.

    Article  CAS  PubMed  Google Scholar 

  38. Fraune C, Lange S, Krebs C, et al. AT1 antagonism and renin inhibition in mice: pivotal role of targeting angiotensin II in chronic kidney disease. Am J Physiol Renal Physiol. 2012;303:F1037–48.

    Article  CAS  PubMed  Google Scholar 

  39. Whaley-Connell A, Habibi J, Rehmer N, et al. Renin Inhibition and AT1R blockade improve metabolic signaling, oxidant stress and myocardial tissue remodeling. Metabolism. 2013;62:861–72.

    Article  CAS  PubMed  Google Scholar 

  40. Choi DE, Jeong JY, Lim BJ, et al. Aliskiren ameliorates renal inflammation and fibrosis induced by unilateral ureteral obstruction in mice. J Urol. 2011;186:694–701.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program of Natural Science Foundation of China (No. 81370300) and China Education Ministry Colleges and Universities Special Scientific Research Foundation for Doctoral Advisor Class (No. 20121202110004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z., Wang, X., Li, J. et al. Protective Effects of Aliskiren on Atrial Ionic Remodeling in a Canine Model of Rapid Atrial Pacing. Cardiovasc Drugs Ther 28, 137–143 (2014). https://doi.org/10.1007/s10557-014-6509-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6509-x

Keywords

Navigation