Skip to main content

Advertisement

Log in

Human platelet lysate enhances the proliferative activity of cultured human fibroblast-like cells from different tissues

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Several studies have shown the presence of fibroblast-like cells in the stromal fraction of different tissues with a high proliferative and differentiation potential. Platelet alpha granules contain growth factors released into the environment during activation. The effects of different supplements for culture medium (human serum, bovine serum and platelet lysate) on cultured human fibroblast-like cells from bone marrow, adipose tissue, trabecular bone and dental pulp have been compared. Expression of typical stromal and hematopoietic markers was analyzed and proliferative rates were determined. Flow cytofluorometry showed a homogenous pattern in serial-passaged cells, with a high level of stromal cell-associated markers (CD13, CD90, CD105). The presence of platelet lysate in culture media increased the number of cell generations obtained regardless of cell source. This effect was serum-dependent. Cell-based therapies can benefit by the use of products from human origin for “ex vivo” expansion of multipotent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barbero A, Palumberi V, Wagner B, Sader R, Grote MJ, Martin I (2005) Experimental and mathematical study of the influence of growth factors on the growth kinetics of adult human articular chondrocytes. J Cell Physiol 204:830–838

    Article  PubMed  CAS  Google Scholar 

  • Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634

    Article  PubMed  Google Scholar 

  • Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14

    Article  PubMed  CAS  Google Scholar 

  • Cenni E, Ciapetti G, Pagani S, Perut F, Giunti A, Baldini N (2005) Effects of activated platelet concentrates on human primary cultures of fibroblasts and oateoblasts. J Periodontol 76:323–328

    Article  PubMed  CAS  Google Scholar 

  • Colter D, Class R, DiGirolamo CM, Prockop DJ (2000). Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 97:3213–3218

    Article  PubMed  CAS  Google Scholar 

  • Deasy BM, Jankowski RJ, Payne TR, Cao B, Goff JP, Greenberger JS, Huard J (2003). Modeling stem cell population growth: incorporating terms for proliferative heterogeneity. Stem Cells 21:536–545

    Article  PubMed  CAS  Google Scholar 

  • DiGirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999). Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281

    Article  PubMed  CAS  Google Scholar 

  • Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Latzinik NW, Grosheva AG, Gorskaya UF (1982) Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol 10:217–227

    PubMed  CAS  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189:54–63

    Article  PubMed  CAS  Google Scholar 

  • Gruber R, Kandler B, Fischer MB, Watzek G (2006) Osteogenic differentiation induced by bone morphogenetic proteins can be suppressed by platelet-released supernatant in vitro. Clin Oral Implants Res 17:188–193

    Article  PubMed  Google Scholar 

  • Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, Paschalis EP, Wilkison WO, Gimble JM (2001) Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 7:729–741

    Article  PubMed  CAS  Google Scholar 

  • Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937

    Article  PubMed  CAS  Google Scholar 

  • Hsieh SC, Graves DT (1998) Pulse application of platelet-derived growth factor enhances formation of a mineralizing matrix while continuous application is inhibitory. J Cell Biochem 69:169–180

    Article  PubMed  CAS  Google Scholar 

  • Hultman CS, Brinson GM, Siltharm S, deSerres S, Cairns BA, Peterson HD, Meyer AA (1996) Allogeneic fibroblasts used to grow cultured epidermal autografts persist in vivo and sensitize the graft recipient for accelerated second-set rejection. J Trauma 41:51–58

    PubMed  CAS  Google Scholar 

  • Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH (2002) Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 20:249–258

    Article  PubMed  Google Scholar 

  • Kaplan DR, Chao FC, Stiles CD, Antoniades HN, Scher CD (1979) Platelet alpha granules contain a growth factor for fibroblasts. Blood 53:1043–1052

    PubMed  CAS  Google Scholar 

  • Kieswetter K, Schwartz Z, Alderete M, Dean DD, Boyan BD (1997) Platelet derived growth factor stimulates chondrocyte proliferation but prevents endochondral maturation. Endocrine 6:257–264

    Article  PubMed  CAS  Google Scholar 

  • Korbling M, Estrov Z (2003) Adult stem cells for tissue repair – a new therapeutic concept? N Engl J Med 349:570–582

    Article  PubMed  Google Scholar 

  • Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    Article  PubMed  Google Scholar 

  • Ledent E, Wasteson Å, Berlin G (1995) Growth factor release during preparation and storage of platelet concentrates. Vox Sang 68:205–209

    Article  PubMed  CAS  Google Scholar 

  • Lee OK, Kuo TK, Chen W-M, Lee K-D, Hsieh S-L, Chen T-H (2004) Isolation of multi-potent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Lowery GL, Kulkarni S, Pennisi AE (1999) Use of autologous growth factors in lumbar spinal fusion. Bone 25:47–50

    Article  Google Scholar 

  • Lucarelli E, Beccheroni A, Donati D, Sangiorgi L, Cenacchi A, Del Vento AM, Meotti C, Bertoja AZ, Giardino R, Fornasari PM, Mercuri M, Picci P (2003) Platelet-derived growth factors enhance proliferation of human stromal stem cells. Biomaterials 24:3095–3100

    Article  PubMed  CAS  Google Scholar 

  • Mets T, Verdonk G (1981) In vitro aging of human bone marrow- derived stromal cells. Mech Ageing Dev 16:81–89

    Article  PubMed  CAS  Google Scholar 

  • Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520

    CAS  Google Scholar 

  • Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385

    Article  PubMed  Google Scholar 

  • Miura M, Zhao M, Lu B, Fisher LW, Robey PG, Shi S, Gronthos S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812

    Article  PubMed  CAS  Google Scholar 

  • Nixon AJ, Lillich JT, Burton-Wurster N, Lust G, Mohammed HO (1998) Differentiated cellular function in fetal chondrocytes cultured with insulin-like growth factor-I and transforming growth factor-B. J Orthop Res 16:531–541

    Article  PubMed  CAS  Google Scholar 

  • Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75:436

    Article  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663

    Article  PubMed  Google Scholar 

  • Prunet-Marcassus B, Cousin B, Caton D, Andre M, Penicaud L, Casteilla L (2006) From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res 312:727–736

    Article  PubMed  CAS  Google Scholar 

  • Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    Article  PubMed  CAS  Google Scholar 

  • Robson MC (2003) Cytokine manipulation of the wound. Clin Plastic Surg 30:57–65

    Article  Google Scholar 

  • Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039

    PubMed  CAS  Google Scholar 

  • Sakaguchi Y, Sekiya I, Yagishita K, Ichinose S, Shinomiya K, Muneta T (2004) Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood 104:2728–2735

    Article  PubMed  CAS  Google Scholar 

  • Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop J (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20:530–541

    Article  PubMed  Google Scholar 

  • Spees JL, Gregory CA, Singh H, Tucker HA, Peister A, Lynch PJ, Hsu SC, Smith J, Prockop DJ (2004) Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther 9:747–756

    Article  PubMed  CAS  Google Scholar 

  • Suva D, Garavaglia G, Menetrey J, Chapuis B, Hoffmeyer P, Bernheim L, Kindler V (2004) Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells. J Cell Physiol 198:110–118

    Article  PubMed  CAS  Google Scholar 

  • Tuli R, Tuli S, Nandi S, Wang ML, Alexander PG, Haleem-Smith H, Hozack WJ, Manner PA, Danielson KG, Tuan RS (2003) Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells 21:681–693

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa M, Seghatchian MJ, Lubenko A, Contreras M, Dilger P, Bird C, Thorpe R (1996) Cytokine levels in platelet concentrates: quantitation by bioassays and immunoassays. Br J Haematol 93:225–234

    Article  PubMed  CAS  Google Scholar 

  • Weiser L, Bhargava M, Attia E, Tozilli PA (1999) The effect of serum and platelet derived growth factor on chondrocytes grown in collagen gels. Tissue Eng 5:533–544

    Article  PubMed  CAS  Google Scholar 

  • Wiltfang J, Kloss FR, Kessler P, Nkenke E, Schultze-Mosgau S, Zimmermann R, Schlegel KA (2004) Effects of platelet-rich plasma on bone healing in combination with autogenous bone and bone substitutes in critical-size defects. An animal experiment. Clin Oral Implants Res 15:187–193

    Article  Google Scholar 

  • Yamaguchi M, Hirayama F, Fujihara M, Murahashi H, Sato N, Ikebuchi K, Sawada KI, Koike T, Kuwabara M, Ikeda H (2002) Bone marrow stromal cells prepared using AB serum bFGF for hematopoietic stem cells expansion. Transfusion 42:921–927

    Article  PubMed  CAS  Google Scholar 

  • Yeh ETH, Zhang S, Wu HD, Körbling M, Willerson JT, Estrov Z (2003) Transdifferentiation of human peripheral blood CD34+enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 108:2070–2073

    Article  PubMed  Google Scholar 

  • Zhao Y, Glesne D, Huberman E (2003) A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA 100:2426–2431

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Jakubietz M, Strasser E, Wiltfang J, Eckstein R (2001) Different preparation methods to obtain platelet components as a source of growth factors for local applications. Transfusion 41:1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  • Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2:477–488

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We wish to thank Isabel Plasencia, Casi Riol and Amparo Bernárdez for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Mirabet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirabet, V., Solves, P., Miñana, M.D. et al. Human platelet lysate enhances the proliferative activity of cultured human fibroblast-like cells from different tissues. Cell Tissue Banking 9, 1–10 (2008). https://doi.org/10.1007/s10561-007-9048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-007-9048-x

Keywords

Navigation