Skip to main content

Advertisement

Log in

The effects of prolonged deep freezing on the biomechanical properties of osteochondral allografts

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Musculo-skeletal allografts sterilized and deep frozen are among the most common human tissue to be preserved and utilized in modern medicine. The effects of a long deep freezing period on cortical bone has already been evaluated and found to be insignificant. However, there are no reports about the influences of a protracted deep freezing period on osteochondral allografts. One hundred osteochondral cylinders were taken from a fresh specimen and humeral heads of 1 year, 2 years, 3 years and 4 year old bones. Twenty chips from each period, with a minimum of 3 chips per humeral head. Each was mechanically tested by 3 point compression. The fresh osteochondral allografts were significantly mechanically better than the deep frozen osteochondral allografts. There was no statistical significant time dependent difference between the deep frozen groups in relation to the freezing period. Therefore, we conclude that, from the mechanical point of view deep freezing of osteochondral allografts over a period of 4 years, is safe without further deterioration of the biomechanical properties of the osteochondral allografts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akkus O, Belaney RM (2005) Sterilization by gamma radiation impairs the tensile fatigue life of cortical bone by two orders of magnitude. J Orthop Res 23(5):1054–1058. doi:10.1016/j.orthres.2005.03.003

    Article  PubMed  Google Scholar 

  • Alleyne KR, Galloway MT (2001) Management of osteochondral injuries of the knee. Clin Sports Med 20(2):343–364. doi:10.1016/S0278-5919(05)70310-0

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CG, Mow VC (1982) Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am 64(1):88–94

    PubMed  CAS  Google Scholar 

  • Ball ST, Amiel D, Williams SK, Tontz W, Chen AC, Sah RL et al (2004) The effects of storage on fresh human osteochondral allografts. Clin Orthop Relat Res 418:246–252. doi:10.1097/00003086-200401000-00043

    Article  PubMed  Google Scholar 

  • Bell RS, Davis A, Allan DG, Langer F, Czitrom AA, Gross AE (1994) Fresh osteochondral allografts for advanced giant cell tumors at the knee. J Arthroplasty 9(6):603–609. doi:10.1016/0883-5403(94)90113-9

    Article  PubMed  CAS  Google Scholar 

  • Chu CR, Convery FR, Akeson WH, Meyers M, Amiel D (1999) Articular cartilage transplantation. Clinical results in the knee. Clin Orthop Relat Res 360:159–168. doi:10.1097/00003086-199903000-00019

    Article  PubMed  Google Scholar 

  • Cornu O, Banse X, Docquier PL, Luyckx S, Delloye C (2000) Effects of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res 18:426–431. doi:10.1002/jor.1100180314

    Article  PubMed  CAS  Google Scholar 

  • De Roeck NJ, Drabu KJ (2001) Impaction bone grafting using freeze-dried allograft in revision hip arthroplasty. J Arthroplasty 16(2):201–206. doi:10.1054/arth.2001.20250

    Article  PubMed  Google Scholar 

  • Ding M, Dalstra M, Linde F, Hvid I (1998) Mechanical properties of the normal human tibial cartilage-bone complex in relation to age. Clin Biomech (Bristol, Avon) 13(4–5):351–358. doi:10.1016/S0268-0033(98)00067-9

    Article  Google Scholar 

  • Dodd CA, Fergusson CM, Freedman L, Houghton GR, Thomas D (1988) Allograft versus autograft bone in scoliosis surgery. J Bone Joint Surg Br 70(3):431–434

    PubMed  CAS  Google Scholar 

  • Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121. doi:10.2307/2281208

    Article  Google Scholar 

  • Eagle MJ, Rooney P, Lomas R, Kearney JN (2005) Validation of radiation dose received by frozen unprocessed and processed bone during terminal sterilisation. Cell Tissue Bank 6(3):221–230. doi:10.1007/s10561-005-7479-9

    Article  PubMed  CAS  Google Scholar 

  • Egli RJ, Sckell A, Fraitzl CR, Felix R, Ganz R, Hofstetter W et al (2003) Cryopreservation with dimethyl sulfoxide sustains partially the biological function of osteochondral tissue. Bone 33(3):352–361. doi:10.1016/S8756-3282(03)00192-3

    Article  PubMed  CAS  Google Scholar 

  • Ghazavi MT, Pritzker KP, Davis AM, Gross AE (1997) Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg Br 79(6):1008–1013. doi:10.1302/0301-620X.79B6.7534

    Article  PubMed  CAS  Google Scholar 

  • Hayes DW Jr, Averett RK (2001) Articular cartilage transplantation. Current and future limitations and solutions. Clin Podiatr Med Surg 18(1):161–176

    PubMed  Google Scholar 

  • Iwamoto Y, Sugioka Y, Chuman H, Masuda S, Hotokebuchi T, Kawai S et al (1997) Nationwide survey of bone grafting performed from 1980 through 1989 in Japan. Clin Orthop Relat Res 335:292–297

    PubMed  Google Scholar 

  • Jonckheere AR (1954) A Distribution free k-sample test against ordered alternatives. Biometrika 41:133–145

    Google Scholar 

  • Kempson GE (1991) Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint. Biochim Biophys Acta 1075(3):223–230

    PubMed  CAS  Google Scholar 

  • Kubo T, Arai Y, Namie K, Takahashi K, Hojo T, Inoue S et al (2001) Time-sequential changes in biomechanical and morphological properties of articular cartilage in cryopreserved osteochondral allografting. J Orthop Sci 6(3):276–281. doi:10.1007/s007760100047

    Article  PubMed  CAS  Google Scholar 

  • Mankin HJ, Doppelt S, Tomford W (1983) Clinical experience with allograft implantation. The first ten years. Clin Orthop Relat Res 174:69–86

    PubMed  Google Scholar 

  • Mitchell EJ, Stawarz AM, Kayacan R, Rimnac CM (2004) The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone. J Bone Joint Surg Am 86-A(12):2648–2657

    PubMed  Google Scholar 

  • Nguyen H, Morgan DA, Forwood MR (2007) Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 8(2):93–105. doi:10.1007/s10561-006-9020-1

    Article  PubMed  Google Scholar 

  • Pennock AT, Wagner F, Robertson CM, Harwood FL, Bugbee WD, Amiel D (2006a) Prolonged storage of osteochondral allografts: does the addition of fetal bovine serum improve chondrocyte viability? J Knee Surg 19(4):265–272

    PubMed  Google Scholar 

  • Pennock AT, Robertson CM, Wagner F, Harwood FL, Bugbee WD, Amiel D (2006b) Does subchondral bone affect the fate of osteochondral allografts during storage? Am J Sports Med 34(4):586–591. doi:10.1177/0363546505281815

    Article  PubMed  Google Scholar 

  • R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Rohde RS, Studer RK, Chu CR (2004) Mini-pig fresh osteochondral allografts deteriorate after 1 week of cold storage. Clin Orthop Relat Res 427:226–233. doi:10.1097/01.blo.0000138955.27186.8e

    Google Scholar 

  • Salai M, Brosh T, Keller N, Perelman M, Dudkiewitz I (2000) The effects of prolonged cryopreservation on the biomechanical properties of bone allografts: a microbiological, histological and mechanical study. Cell Tissue Bank 1:69–73. doi:10.1023/A:1010163800026

    Article  PubMed  Google Scholar 

  • Terpstra TJ (1952) The asymptotic normality and consistency of Kandall’s test against trend when ties are present in one ranking. Indag Math 14:327–333

    Google Scholar 

  • Vajaradul Y (1996) Bone banking in Thailand. A 10-year experience (1984–1994). Clin Orthop Relat Res 323:173–180. doi:10.1097/00003086-199602000-00023

    Article  PubMed  Google Scholar 

  • Vastel L, Masse C, Crozier E, Padilla F, Laugier P, Mitton D et al (2007) Effects of gamma irradiation on mechanical properties of defatted trabecular bone allografts assessed by speed-of-sound measurement. Cell Tissue Bank 8(3):205–210. doi:10.1007/s10561-006-9030-z

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ III, Dreese JC, Chen CT (2004) Chondrocyte survival and material properties of hypothermically stored cartilage: an evaluation of tissue used for osteochondral allograft transplantation. Am J Sports Med 32(1):132–139. doi:10.1177/0095399703258733

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Dudkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozen, B., Brosh, T., Salai, M. et al. The effects of prolonged deep freezing on the biomechanical properties of osteochondral allografts. Cell Tissue Bank 10, 27–31 (2009). https://doi.org/10.1007/s10561-008-9106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-008-9106-z

Keywords

Navigation