Skip to main content

Advertisement

Log in

Epiflex® A new decellularised human skin tissue transplant: manufacture and properties

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

The manufacture and initial testing of a new human tissue transplant is described. Epiflex® is a human acellular dermis transplant that is manufactured from skin recovered from screened consenting donors according to validated and approved methods. The transplant is approved as a drug in Germany. The safety, stability and usability of the transplant are discussed with respect to the results of sterility, residual moisture content and rehydration tests. Histological and confocal laser scanning microscopy experiments and analysis of oxygen and water vapour permeability demonstrate that the native extracellular matrix structure and transport properties of human connective tissue are retained in the transplant. Results from initial clinical investigations suggest that Epiflex® can be used successfully in the treatment of burns, hypertrophic scars and as a transplant seeded with autologous dermal fibroblasts for soft-tissue regeneration in settings with wound healing problems following multi-modal treatments for sarcomas of the extremities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bannasch H, Unterberg T, Fohn M, Weyand B, Horch RE, Stark GB (2008) Cultured keratinocytes in fibrin with decellularised dermis close porcine full-thickness wounds in a single step. Burns 34:1015–1021. doi:S0305-4179(07)00334-8

    Article  PubMed  Google Scholar 

  • Barret JP, Dziewulski P, McCauley RL, Herndon DN, Desai MH (1999) Dural reconstruction of a class IV calvarial burn with decellularised human dermis. Burns 25:459–462. doi:S0305417999000182

    Article  PubMed  CAS  Google Scholar 

  • Bauer SM, Bauer RJ, Liu ZJ, Chen H, Goldstein L, Velazquez OC (2005) Vascular endothelial growth factor-C promotes vasculogenesis, angiogenesis, and collagen constriction in three-dimensional collagen gels. J Vasc Surg 41:699–707. doi:S0741521405001163

    Article  PubMed  Google Scholar 

  • BfArm (2007) Drug Approval Number: BfArM: 3003749.00.00 Human Skin, freeze-dried, DIZG. Paul Ehrlich Institut, Langen, Germany. 06.06.2007

  • BfArM (2009) Deutsches Arzneibuch 2009 Deutscher Apotheker Verlag, Stuttgart, Germany

  • Brosig H, Jacker HJ, Borchert HH, Kalus U, Dorner T, von Versen R, Pruss A (2005) Sufficient penetration of peracetic acid into drilled human femoral heads. Cell Tissue Bank 6:231–237. doi:10.1007/s10561-005-1473-0

    Article  PubMed  CAS  Google Scholar 

  • Cen L, Liu W, Cui L, Zhang W and Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res doi:10.1203/10.1203/PDR.0b013e31816c5bc3

  • DIN (2004) DIN 53380-3. In: D. I. f. N. e. V. DIN (ed) Praxis Chemie, Beuth Verlag, Berlin, pp

  • DIN (2008) DIN 53122-1 In: D. I. f. N. e. V. DIN (ed) Papier, Pappe und Faserstoff, Beuth Verlag, Berlin, pp

  • Espinosa-de-los-Monteros A, de la Torre JI, Marrero I, Andrades P, Davis MR, Vasconez LO (2007) Utilization of human cadaveric acellular dermis for abdominal hernia reconstruction. Ann Plast Surg 58:264–267. doi:10.1097/01.sap.0000254410.91132.a8

    Article  PubMed  CAS  Google Scholar 

  • Forrest L (1983) Current concepts in soft connective tissue wound healing. Br J Surg 70:133–140

    Article  PubMed  CAS  Google Scholar 

  • Forsberg S, Ostman A, Rollman O (2008) Regeneration of human epidermis on acellular dermis is impeded by small-molecule inhibitors of EGF receptor tyrosine kinase. Arch Dermatol Res 300:505–516. doi:10.1007/s00403-008-0853-2

    Article  PubMed  CAS  Google Scholar 

  • Goldring MB, Goldring SR (1991) Cytokines and cell growth control. Crit Rev Eukaryot Gene Expr 1:301–326

    PubMed  CAS  Google Scholar 

  • Gore DC (2005) Utility of acellular allograft dermis in the care of elderly burn patients. J Surg Res 125:37–41. doi:S0022-4804(04)00695-X

    Article  PubMed  Google Scholar 

  • Haslik W, Kamolz LP, Nathschlager G, Andel H, Meissl G, Frey M (2007) First experiences with the collagen-elastin matrix Matriderm as a dermal substitute in severe burn injuries of the hand. Burns 33:364–368. doi:S0305-4179(06)00228-2

    Article  PubMed  CAS  Google Scholar 

  • Haslik W, Kamolz LP, Manna F, Hladik M, Rath T and Frey M (2008) Management of full-thickness skin defects in the hand and wrist region: first long-term experiences with the dermal matrix Matriderm((R)). J Plast Reconstr Aesthet Surg doi:S1748-6815(08)01001-2

  • Ismail AS, Costantino PD, Sen C (2007) Tran nasal transsphenoidal endoscopic repair of CSF leakage using multilayer acellular dermis. Skull Base 17:125–132. doi:10.1055/s-2007-970556

    Article  PubMed  Google Scholar 

  • Kothapalli D, Frazier KS, Welply A, Segarini PR, Grotendorst GR (1997) Transforming growth factor beta induces anchorage-independent growth of NRK fibroblasts via a connective tissue growth factor-dependent signalling pathway. Cell Growth Differ 8:61–68

    PubMed  CAS  Google Scholar 

  • Leblond CP, Inoue S (1989) Structure, composition, and assembly of basement membrane. Am J Anat 185:367–390. doi:10.1002/aja.1001850403

    Article  PubMed  CAS  Google Scholar 

  • McLimans WF, Crouse EJ, Tunnah KV, Moore GE (1968) Kinetics of gas diffusion in mammalian cell culture systems. I. experimental. Biotechnol Bioeng 10:725–740

    Article  CAS  Google Scholar 

  • Meyer SR, Chiu B, Churchill TA, Zhu L, Lakey JR, Ross DB (2006) Comparison of aortic valve allograft decellularisation techniques in the rat. J Biomed Mater Res A 79:254–262. doi:10.1002/jbm.a.30777

    PubMed  Google Scholar 

  • Mosher DF (1984) Physiology of fibronectin. Annu Rev Med 35:561–575. doi:10.1146/annurev.me.35.020184.003021

    Article  PubMed  CAS  Google Scholar 

  • Pahari MP, Raman A, Bloomenthal A, Costa MA, Bradley SP, Banner B, Rastellini C, Cicalese L (2006) A novel approach for intestinal elongation using acellular dermal matrix: an experimental study in rats. Transplant Proc 38:1849–1850. doi:S0041-1345(06)00542-2

    Article  PubMed  CAS  Google Scholar 

  • Pruss A, von Versen R (2007) Influence of European regulations on quality, safety and availability of cell and tissue allografts in Germany. Handchir Mikrochir Plast Chir 39:81–87. doi:10.1055/s-2007-965134

    Article  PubMed  CAS  Google Scholar 

  • Pruss A, Kao M, Kiesewetter H, von Versen R, Pauli G (1999) Virus safety of a vital bone tissue transplants: evaluation of sterilization steps of spongiosa cuboids using a peracetic acid-methanol mixture. Biologicals 27:195–201. doi:10.1006/biol.1999.0177

    Article  PubMed  CAS  Google Scholar 

  • Pruss A, Baumann B, Seibold M, Kao M, Tintelnot K, von Versen R, Radtke H, Dorner T, Pauli G, Gobel UB (2001a) Validation of the sterilization procedure of allogeneic a vital bone transplants using peracetic acid-ethanol. Biologicals 29:59–66. doi:10.1006/biol.2001.0286

    Article  PubMed  CAS  Google Scholar 

  • Pruss A, Hansen A, Kao M, Gurtler L, Pauli G, Benedix F, Von Versen R (2001b) Comparison of the efficacy of virus inactivation methods in allogeneic a vital bone tissue transplants. Cell Tissue Bank 2:201–215. doi:5098360

    Article  PubMed  CAS  Google Scholar 

  • Pruss A, Gobel UB, Pauli G, Kao M, Seibold M, Monig HJ, Hansen A, von Versen R (2003a) Peracetic acid-ethanol treatment of allogeneic a vital bone tissue transplants—a reliable sterilization method. Ann Transplant 8:34–42

    PubMed  Google Scholar 

  • Pruss A, Gobel UB, Pauli G, Kao M, Seibold M, Monig HJ, Hansen A, von VR (2003b) Peracetic acid-ethanol treatment of allogeneic a vital bone tissue transplants–a reliable sterilization method. Ann.Transplant. 8:34–42

    PubMed  Google Scholar 

  • Rennekampff HO, Pfau M, Schaller HE (2002) Acellular allograft dermal matrix: immediate or delayed epidermal coverage? Burns 28:100–101. doi:S0305417901000754

    Article  PubMed  Google Scholar 

  • Ricard-Blum S, Ville G (1988) Collagen cross-linking. Cell Mol Biol 34:581–590

    PubMed  CAS  Google Scholar 

  • Roessner ED, Thier S, Hohenberger P, Schwarz M, Pott P, Dinter D, Smith M (2009) Acellular dermal matrix seeded with autologous fibroblasts improves wound breaking strength in a rodent soft tissue damage model in neoadjuvant settings. J Biomater Appl. doi:10.1177/0885328209347961

  • Rößner E, Syring C, Versen R, Hohenberger P (2007) Entwicklung einer mit autologen Fibroblasten besiedelten azellulären allogenen virus- inaktivierten Dermis als Gewebsersatz für postoperative Weichgewebsdefekte In: Chirurgisches forum 2007. Springer, Berlin, pp 313–314

    Google Scholar 

  • Scheffler S, Trautmann S, Smith M, Kalus U, von Versen R, Pauli G, Pruss A (2007) No influence of collagenous proteins of Achilles tendon, skin and cartilage on the virus-inactivating efficacy of peracetic acid-ethanol. Biologicals 35:355–359. doi:S1045-1056(07)00049-8

    Article  PubMed  CAS  Google Scholar 

  • Schenke-Layland K, Vasilevski O, Opitz F, Konig K, Riemann I, Halbhuber KJ, Wahlers T, Stock UA (2003) Impact of decellularisation of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 143:201–208

    Article  PubMed  CAS  Google Scholar 

  • Schonmeyr B, Clavin N, Avraham T, Longo V, Mehrara BJ (2009) Synthesis of a tissue-engineered periosteum with acellular dermal matrix and cultured mesenchymal stem cells. Tissue Eng Part A 15:1833–1841. doi:10.1089/ten.tea.2008.0446

    Article  PubMed  CAS  Google Scholar 

  • Sclafani AP, Romo T 3rd, Jacono AA, McCormick S, Cocker R, Parker A (2000) Evaluation of acellular dermal graft in sheet (AlloDerm) and injectable (micronized AlloDerm) forms for soft tissue augmentation clinical observations and histological analysis. Arch Facial Plast Surg 2:130–136. doi:qoa00002

    Article  PubMed  CAS  Google Scholar 

  • Scott PG (1983) Macromolecular constituents of basement membranes: a review of current knowledge on their structure and function. Can J Biochem Cell Biol 61:942–948

    Article  PubMed  CAS  Google Scholar 

  • Sin P, Brychta P (2006) Cut metrical measurement confirms the efficacy of the composite skin grafting using allogeneic acellular dermis in burns. Acta Chir Plast 48:59–64

    PubMed  CAS  Google Scholar 

  • Wainwright DJ (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21:243–248. doi:030541799593866I

    Article  PubMed  CAS  Google Scholar 

  • Whitaker IS, Prowse S, Potokar TS (2008) A critical evaluation of the use of Biobrane as a biologic skin substitute: a versatile tool for the plastic and reconstructive surgeon. Ann Plast Surg 60:333–337. doi:10.1097/SAP.0b013e31806bf446

    Article  PubMed  CAS  Google Scholar 

  • Yarmush ML, Toner M, Dunn JC, Rotem A, Hubel A, Tompkins RG (1992) Hepatic tissue engineering. Development of critical technologies. Ann N Y Acad Sci 665:238–252

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M (2007) Skeletal remodelling in health and disease. Nat Med 13:791–801. doi:nm1593

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rössner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rössner, E., Smith, M.D., Petschke, B. et al. Epiflex® A new decellularised human skin tissue transplant: manufacture and properties. Cell Tissue Bank 12, 209–217 (2011). https://doi.org/10.1007/s10561-010-9187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-010-9187-3

Keywords

Navigation