Skip to main content
Log in

A validation protocol and evaluation algorithms to determine compatibility of cell therapy product matrices in microbiological testing

  • Brief Communication
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

As part of product release testing, “sterility” of cellular therapy products, using formally validated methods, must be demonstrated, irrespective of whether products are released and administered while microbiological results are pending or whether these can be awaited. Components of the matrix, i.e. the carrier fluid and the therapeutic cells, could potentially inhibit bacterial growth and may thus obscure their presence, resulting in false-negative data. The European Pharmacopoeia and equivalent guidelines therefore specify that for each cell therapy product the specific matrix’ compatibility with validated detection methods is formally established. There for, matrix is spiked with known numbers of representative aerobic and anaerobic agents, cultured in automated systems such as BacT/ALERT, followed by microbiological species identification from culture-positive bottles. We here propose an easy-to-follow protocol for matrix validation and demonstrate its successful execution with a panel of novel advanced therapy medicinal products and standard cell therapy products, as well as algorithms for interpretation of conflicting results between BacT/Alert and culture methods. This protocol can serve as a basis for microbiological method (matrix) validations for cellular preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • European Pharmacopoeia Chapter 2.6.27 Draft; 2013 Microbiological control of cellular preparations

  • European Pharmacopoeia Chapter 2.6.27 Edition 8.00; 1/2011: 20627 Microbiological control of cellular products

  • Hahn S, Sireis W, Hourfar K, Karpova D, Dauber K, Kempf VA et al (2014) Effects of storage temperature on hematopoietic stability and microbial safety of BM aspirates. Bone Marrow Transpl 49(3):338–348

    Article  CAS  Google Scholar 

  • Khuu HM, Stock F, McGann M, Carter CS, Atkins JW, Murray PR et al (2004) Comparison of automated culture systems with a CFR/USP-compliant method for sterility testing of cell-therapy products. Cytotherapy 6(3):183–195

    Article  CAS  PubMed  Google Scholar 

  • Khuu HM, Patel N, Carter CS, Murray PR, Read EJ (2006) Sterility testing of cell therapy products: parallel comparison of automated methods with a CFR-compliant method. Transfusion 46(12):2071–2082

    Article  PubMed  Google Scholar 

  • Kuci Z, Kuci S, Zircher S, Koller S, Schubert R, Bonig H et al (2011) Mesenchymal stromal cells derived from CD271(+) bone marrow mononuclear cells exert potent allosuppressive properties. Cytotherapy 13(10):1193–1204

    Article  CAS  PubMed  Google Scholar 

  • Kuci Z, Seiberth J, Latifi-Pupovci H, Wehner S, Stein S, Grez M et al (2013) Clonal analysis of multipotent stromal cells derived from CD271+ bone marrow mononuclear cells: functional heterogeneity and different mechanisms of allosuppression. Haematologica 98(10):1609–1616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mastronardi C, Perkins H, Derksen P, denAdmirant M, Ramirez-Arcos S (2010) Evaluation of the BacT/ALERT 3D system for the implementation of in-house quality control sterility testing at Canadian Blood Services. Clin Chem Lab Med CCLM/FESCC 48(8):1179–1187

    CAS  Google Scholar 

  • Mastronardi C, Yang L, Halpenny M, Toye B, Ramirez-Arcos S (2012) Evaluation of the sterility testing process of hematopoietic stem cells at Canadian Blood Services. Transfusion 52(8):1778–1784

    Article  PubMed  Google Scholar 

  • Namdaroglu S, Tekgunduz E, Bozdag SC, Durgun G, Sarica A, Demiriz IS et al (2013) Microbial contamination of hematopoietic progenitor cell products. Transfus Apher Sci 48(3):403–406

    Article  PubMed  Google Scholar 

  • Paul-Ehrlich-Institut. Stellungnahme des Paul-Ehrlich-Instituts zur mikrobiologischen Kontrolle von hämatopoietischen Stammzellpräparaten [Statement of the Paul-Ehrlich-Institute on microbial testing of hematopoeitic stem cell products]; 2012. http://www.pei.de/SharedDocs/Downloads/blut/stammzellen-genehmigung-21a-amg/pei-stellungnahme-mikrobiologische-kontrolle-stammzellen.pdf?__blob=publicationFile&v=3. Accessed 24 June 2014

  • Rettinger E, Kuci S, Naumann I, Becker P, Kreyenberg H, Anzaghe M et al (2012a) The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer cells against leukemia cells. Cytotherapy 14(1):91–103

    Article  CAS  PubMed  Google Scholar 

  • Rettinger E, Meyer V, Kreyenberg H, Volk A, Kuci S, Willasch A et al (2012b) Cytotoxic capacity of IL-15-stimulated cytokine-induced Killer cells against human acute myeloid Leukemia and Rhabdomyosarcoma in humanized Preclinical mouse models. Front Oncol 2:32

    Article  PubMed Central  PubMed  Google Scholar 

  • Sireis W, Ruster B, Daiss C, Hourfar MK, Capalbo G, Pfeiffer HU et al (2011) Extension of platelet shelf life from 4 to 5 days by implementation of a new screening strategy in Germany. Vox Sang 101(3):191–199

    Article  CAS  PubMed  Google Scholar 

  • Soncin S, Lo Cicero V, Astori G, Soldati G, Gola M, Surder D et al (2009) A practical approach for the validation of sterility, endotoxin and potency testing of bone marrow mononucleated cells used in cardiac regeneration in compliance with good manufacturing practice. J Transl Med 7:78

    Article  PubMed Central  PubMed  Google Scholar 

  • Störmer M, Wood EM, Schurig U, Karo O, Spreitzer I, McDonald CP et al (2014) Bacterial safety of cell-based therapeutic preparations, focusing on haematopoietic progenitor cells. Vox Sang 106:285–296

    Article  PubMed  Google Scholar 

  • Thomasen H, Steuhl KP, Meller D (2013) Validierung eines automatischen Testsystems für die Steriltestung von Amnionmembran [validation of an automatic test system for sterility testing of amnion membrane]. Der Ophthalmologe 111:454–459

    Article  Google Scholar 

  • Thorpe TCWM, Turner JE, DiGuiseppi JL, Willert M, Mirrett S, Reller LB (1990) BacT/Alert: an automated colorimetric microbial detection system. J Clin Microbiol 28(7):1608–1612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tramsen L, Schmidt S, Boenig H, Latge JP, Lass-Florl C, Roeger F et al (2013) Clinical-scale generation of multi-specific anti-fungal T cells targeting Candida, Aspergillus and mucormycetes. Cytotherapy 15(3):344–351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

ES and HB are members of the LOEWE Cell and Gene Therapy Frankfurt faculty, funded by Hessian Ministry of Higher Education, Research and the Arts ref.no.: III L 4 518/17.004 (2010/2013). No outside funding was used for these studies.

Conflict of interest

None of the authors have any declarations to make.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halvard Bonig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klarmann, D., Sireis, W., Hogardt, M. et al. A validation protocol and evaluation algorithms to determine compatibility of cell therapy product matrices in microbiological testing. Cell Tissue Bank 16, 311–318 (2015). https://doi.org/10.1007/s10561-014-9474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-014-9474-5

Keywords

Navigation