Skip to main content

Advertisement

Log in

The role of ribosylated-BSA in regulating PC12 cell viability

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Glycation, one of the post-translational modifications, is known to influence protein structure and biological function. Advanced glycation end products (AGEs) have been shown to cause pathologies of diabetes. Glycation levels in patients with Alzheimer’s disease (AD) are higher than in normal people. However, whether the glycation of susceptible proteins is a triggering event for cell damage or simply a result remains to be elucidated. In this study, we demonstrated that ribose-conjugated BSA (Rib-BSA) directly induces PC12 cell death in a dose- and time-dependent manner. The IC50 is 4.6 μM. Unlike glucose-incubated BSA, Rib-BSA rapidly forms cytotoxic AGEs. PC12 is vulnerable to Rib-BSA. However, fructose can induce AGE formation, although no effect on cell survival was observed. This effect of Rib-BSA is reversed by pretreatment of pioglitazone and rosiglitazone, which belongs to thiazolidinediones (TZDs) and are peroxisome proliferator-activated receptor (PPAR-γ) ligands. Moreover, Rib-BSA upregulates inducible nitric oxide synthase (iNOS), cycloxygenase 2 (COX-2) expression, and p-38 phosphorylation and leaves extracellular regulated protein1/2 (ERK1/2) phosphorylation unchanged. The Rib-BSA-induced signaling changes are blocked by rosiglitazone and confirmed by PPAR-γ small-interfering RNA transfection. The reduction of cell survival by Rib-BSA is blocked by the iNOS inhibitor and p38 inhibitor. No effect on cell survival was observed using the COX-2 inhibitor. Consequently, these results show that Rib-BSA directly inducing PC12 cell death is a triggering event and TZDs protect PC12 cell from Rib-BSA damage. Signaling molecules, such as PPAR-γ, P38, and iNOS, are involved in Rib-BSA-mediated cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AGE:

Advanced glycation endproducts

BSA:

Bovine serum albumin

AD:

Alzheimer’s disease

PC12 cell:

Pheochromocytoma cell

Rib-BSA:

Ribose-conjugated BSA

Glc-BSA:

Glucose-conjugated BSA

Frc-BSA:

Fructose-conjugated BSA

DM:

Diabetes mellitus

iNOS:

Inducible nitric oxide synthase

COX-2:

Cycloxygenase 2

ERK:

Extracellular regulated protein

MTT:

3-(4,5-Cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

TZD:

Thiazolidinedione

PPAR-γ:

Peroxisome proliferator-activated receptor-γ

RAGEs:

Receptor for AGEs

References

  • Ajmone-Cat MA, De Simone R, Nicolini A, Minghetti L. Effects of phosphatidylserine on p38 mitogen activated protein kinase, cyclic AMP responding element binding protein and nuclear factor-kappaB activation in resting and activated microglial cells. J Neurochem. 2003;84:413–6.

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996;271:C1424–37.

    PubMed  CAS  Google Scholar 

  • Berger J, Bailey P, Biswas C, Cullinan CA, Doebber TW, Hayes NS, Saperstein R, Smith RG, Leibowitz MD. Thiazolidinediones produce a conformational change in peroxisomal proliferator-activated receptor-gamma: binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology. 1996;137:4189–95.

    Article  PubMed  CAS  Google Scholar 

  • Bolli R, Shinmura K, Tang XL, Kodani E, Xuan YT, Guo Y, Dawn B. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc Res. 2002;55:506–19.

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–34.

    Article  PubMed  CAS  Google Scholar 

  • Bunn HF, Haney DN, Gabbay KH, Gallop PM. Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem Biophys Res Commun. 1975;67:103–9.

    Article  PubMed  CAS  Google Scholar 

  • Carro E, Torres-Aleman I. The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur J Pharmacol. 2004;490:127–33.

    Article  PubMed  CAS  Google Scholar 

  • Chang PC, Chen TH, Chang CJ, Hou CC, Chan P, Lee HM. Advanced glycosylation end products induce inducible nitric oxide synthase (iNOS) expression via a p38 MAPK-dependent pathway. Kidney Int. 2004;65:1664–75.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Wei Y, Wang X, He R. Ribosylation rapidly induces alpha-synuclein to form highly cytotoxic molten globules of advanced glycation end products. PLoS One. 2010;5:e9052.

    Article  PubMed  Google Scholar 

  • Chuang PY, Yu Q, Fang W, Uribarri J, He JC. Advanced glycation endproducts induce podocyte apoptosis by activation of the FOXO4 transcription factor. Kidney Int. 2007;72:965–76.

    Article  PubMed  CAS  Google Scholar 

  • Cohen MP. Intervention strategies to prevent pathogenetic effects of glycated albumin. Arch Biochem Biophys. 2003;419:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Cohen MP, Clements RS. Measuring glycated proteins: clinical and methodological aspects. Diabetes Technol Ther. 1999;1:57–70.

    Article  PubMed  CAS  Google Scholar 

  • Cohen MP, Wu VY, Cohen JA. Glycated albumin stimulates fibronectin and collagen IV production by glomerular endothelial cells under normoglycemic conditions. Biochem Biophys Res Commun. 1997;239:91–4.

    Article  PubMed  CAS  Google Scholar 

  • Coussons PJ, Jacoby J, McKay A, Kelly SM, Price NC, Hunt JV. Glucose modification of human serum albumin: a structural study. Free Radic Biol Med. 1997;22:1217–27.

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Maffia P, Patel NS, Di Paola R, Ialenti A, Genovese T, Chatterjee PK, Di Rosa M, Caputi AP, Thiemermann C. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation. Eur J Pharmacol. 2004;483:79–93.

    Article  PubMed  CAS  Google Scholar 

  • Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol. 2002;2:748–59.

    Article  PubMed  CAS  Google Scholar 

  • Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003;116:1175–86.

    Article  PubMed  CAS  Google Scholar 

  • Dou JT, Chen M, Dufour F, Alkon DL, Zhao WQ. Insulin receptor signaling in long-term memory consolidation following spatial learning. Learn Mem. 2005;12:646–55.

    Article  PubMed  Google Scholar 

  • Fath T, Eidenmuller J, Brandt R. Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer’s disease. J Neurosci. 2002;22:9733–41.

    PubMed  CAS  Google Scholar 

  • Franke S, Sommer M, Ruster C, Bondeva T, Marticke J, Hofmann G, Hein G, Wolf G. Advanced glycation end products induce cell cycle arrest and proinflammatory changes in osteoarthritic fibroblast-like synovial cells. Arthritis Res Ther. 2009;11:R136.

    Article  PubMed  Google Scholar 

  • Grandhee SK, Monnier VM. Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J Biol Chem. 1991;266:11649–53.

    PubMed  CAS  Google Scholar 

  • Haan MN. Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nat Clin Pract Neurol. 2006;2:159–66.

    Article  PubMed  CAS  Google Scholar 

  • Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, O’Banion K, Klockgether T, Van Leuven F, Landreth GE. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain. 2005;128:1442–53.

    Article  PubMed  Google Scholar 

  • Huang CY, Hung LF, Liang CC, Ho LJ. COX-2 and iNOS are critical in advanced glycation end product-activated chondrocytes in vitro. Eur J Clin Investig. 2009;39:417–28.

    Article  CAS  Google Scholar 

  • Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A. TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain. 2007;130:535–47.

    Article  PubMed  Google Scholar 

  • Ji H, Wang H, Zhang F, Li X, Xiang L, Aiguo S. PPARγ agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflamm Res. 2010;59:921–9.

    Article  PubMed  CAS  Google Scholar 

  • Ko LW, Ko EC, Nacharaju P, Liu WK, Chang E, Kenessey A, Yen SH. An immunochemical study on tau glycation in paired helical filaments. Brain Res. 1999;830:301–13.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995;270:12953–6.

    Article  PubMed  CAS  Google Scholar 

  • Li XH, Lv BL, Xie JZ, Liu J, Zhou XW, Wang JZ (2011) AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2011.02.003.

  • Liang X, Wu L, Wang Q, Hand T, Bilak M, McCullough L, Andreasson K. Function of COX-2 and prostaglandins in neurological disease. J Mol Neurosci. 2007;33:94–9.

    Article  PubMed  CAS  Google Scholar 

  • Liu BF, Miyata S, Hirota Y, Higo S, Miyazaki H, Fukunaga M, Hamada Y, Ueyama S, Muramoto O, Uriuhara A, Kasuga M. Methylglyoxal induces apoptosis through activation of p38 mitogen-activated protein kinase in rat mesangial cells. Kidney Int. 2003;63:947–57.

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Liu JT, Ji YY, Lu PP. Rosiglitazone regulates c-reactive protein-induced inflammatory responses via glucocorticoid receptor-mediated inhibition of p38 mitogen-activated protein kinase-toll-like receptor 4 signal pathway in vascular smooth muscle cells. J Cardiovasc Pharmacol. 2011;57:348–56.

    Article  PubMed  CAS  Google Scholar 

  • Loske C, Gerdemann A, Schepl W, Wycislo M, Schinzel R, Palm D, Riederer P, Munch G. Transition metal-mediated glycoxidation accelerates cross-linking of beta-amyloid peptide. Eur J Biochem. 2000;267:4171–8.

    Article  PubMed  CAS  Google Scholar 

  • Madrigal JL, Garcia-Bueno B, Caso JR, Perez-Nievas BG, Leza JC. Stress-induced oxidative changes in brain. CNS Neurol Disord Drug Targets. 2006;5:561–8.

    Article  PubMed  Google Scholar 

  • Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Takahashi T, Yamashita H, Kawakami H. Nicotinic acetylcholine receptors and neurodegenerative disease. Alcohol. 2001;24:79–81.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol. 2006;199:265–73.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds CH, Betts JC, Blackstock WP, Nebreda AR, Anderton BH. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J Neurochem. 2000;74:1587–95.

    Article  PubMed  CAS  Google Scholar 

  • Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, Zvartau-Hind ME, Hosford DA, Roses AD. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J. 2006;6:246–54.

    PubMed  CAS  Google Scholar 

  • Rist RJ, Romero IA, Chan MW, Couraud PO, Roux F, Abbott NJ. F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: effects of cyclic AMP and astrocytic factors. Brain Res. 1997;768:10–8.

    Article  PubMed  CAS  Google Scholar 

  • Ristow M. Neurodegenerative disorders associated with diabetes mellitus. J Mol Med. 2004;82:510–29.

    Article  PubMed  Google Scholar 

  • Sabbatini M, Sansone G, Uccello F, Giliberti A, Conte G, Andreucci VE. Early glycosylation products induce glomerular hyperfiltration in normal rats. Kidney Int. 1992;42:875–81.

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993;90:7240–4.

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Kustermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Bruning JC. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A. 2004;101:3100–5.

    Article  PubMed  CAS  Google Scholar 

  • Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, Friedman A. Lasting blood–brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci. 2004;24:7829–36.

    Article  PubMed  CAS  Google Scholar 

  • Seuffer R. A new method for the determination of sugars in cerebrospinal fluid. J Clin Chem Clin Biochem. 1977;15:663–8.

    PubMed  CAS  Google Scholar 

  • Shaklai N, Garlick RL, Bunn HF. Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem. 1984;259:3812–7.

    PubMed  CAS  Google Scholar 

  • Smith MA, Taneda S, Richey PL, Miyata S, Yan SD, Stern D, Sayre LM, Monnier VM, Perry G. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci U S A. 1994;91:5710–4.

    Article  PubMed  CAS  Google Scholar 

  • Syrovy I. Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. J Biochem Biophys Methods. 1994;28:115–21.

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Wakai M, Niwa H, Dei R, Yamamoto M, Li M, Goto Y, Yasuda T, Nakagomi Y, Watanabe M, Inagaki T, Yasuda Y, Miyata T, Sobue G. Neuronal and glial advanced glycation end product [Nepsilon-(carboxymethyl)lysine] in Alzheimer’s disease brains. Acta Neuropathol. 2001;101:27–35.

    PubMed  CAS  Google Scholar 

  • Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci U S A. 1994;91:4766–70.

    Article  PubMed  CAS  Google Scholar 

  • Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, Fishel MA, Kulstad JJ, Green PS, Cook DG, Kahn SE, Keeling ML, Craft S. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry. 2005;13:950–8.

    PubMed  Google Scholar 

  • Wei Y, Chen L, Chen J, Ge L, He RQ. Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol. 2009;10:10.

    Article  PubMed  Google Scholar 

  • Wells-Knecht KJ, Zyzak DV, Litchfield JE, Thorpe SR, Baynes JW. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry. 1995;34:3702–9.

    Article  PubMed  CAS  Google Scholar 

  • Williams SK, Solenski NJ. Enhanced vesicular ingestion of nonenzymatically glucosylated proteins by capillary endothelium. Microvasc Res. 1984;28:311–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the National Science Council of Taiwan (NSC99-2314-B-197-001-MY3) and a research fund from the Medical Research Center, Cardinal Tien Hospital in Taiwan (CTH-99-1-2A18 & CTH-100-1-2A06). Mass spectrometry analyses were performed by Ms. Tzu-Pei Fan at the MS facilities of the Genomics Research Center, Academia Sinica, and the Core Facilities for Protein Structural Analysis at the Institute of Biological Chemistry, Academia Sinica, supported by a National Science Council grant (NSC100-2325-B-001-029) and the Academia Sinica.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Chen Yang.

Additional information

T.-Y. Kuo and C.-L. Huang contributed equally to this work and should be considered as co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Knockdown of PPAR-γ reverses the effect of pioglitazone (Pio, 10 μM) and rosiglitazone (Ro, 5 μM) on cytotoxicity induced by Rib-BSA in PC12 cells. a PPAR-γ siRNA was transfected 24 h earlier, followed by treatment of pioglitazone (Pio, 10 μM). Eight hours later, Rib-BSA (4 μM) was administered for 24 h for cell viability assay. b PPAR-γ siRNA was transfected 24 h earlier, followed by treatment of rosiglitazone (Ro, 5 μM). Eight hours later, Rib-BSA (4 μM) was administered for 24 h for cell viability assay. MTT assay was performed for cell viability. N = 9 each group, in three independent experiments. Data expressed as mean ± SEM. *p < 0.05 and **p < 0.01. *Compare with the control group. # p < 0.05 and ## p < 0.01, compared with the Rib-BSA group. (PPT 186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, TY., Huang, CL., Yang, JM. et al. The role of ribosylated-BSA in regulating PC12 cell viability. Cell Biol Toxicol 28, 255–267 (2012). https://doi.org/10.1007/s10565-012-9220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-012-9220-3

Keywords

Navigation