Skip to main content
Log in

Cytotoxic effects of pentachlorophenol (PCP) and its metabolite tetrachlorohydroquinone (TCHQ) on liver cells are modulated by antioxidants

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The worldwide distribution and high bioaccumulation potential of pentachlorophenol (PCP) in aquatic organisms imply a high toxicological impact in aquatic systems. Firstly, our investigations show that, similar to mammalian cell lines, PCP can be metabolized to tetrachlorohydroquinone (TCHQ) in the permanent cell line derived from rainbow trout liver cells (RTL-W1). Moreover, we demonstrate that PCP as well as its metabolite TCHQ is capable of influencing the viability of these cells. Three cell viability assays were performed to assess possible cellular targets of these substances. Thus, the cytotoxicity of the PCP-derivative TCHQ was shown for the first time in a fish cell line. Further investigations revealed the involvement of ROS in the cytotoxicity of PCP and its metabolite TCHQ. The observation of oxidative stress provides a plausible explanation for the increased cytotoxicity at higher concentrations especially for PCP and implies possible mechanisms underlying these observations. In addition, antioxidants such as ascorbic acid and quercetin modulate the detrimental effects of PCP and TCHQ whereby both compounds exacerbate the cytotoxic effects of high PCP and TCHQ concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

EtOH:

Ethanol

FBS:

Fetal bovine serum

MeOH:

Methanol

NR:

Neutral red

PCP:

Pentachlorophenol

PI:

Propidium iodide

RTL-W1:

Rainbow trout liver cells

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TCHQ:

Tetrachlorohydroquinone

MTT:

Thiazolyl blue tetrazolium bromide

References

  • Afanasev IB, Dorohzko AL, Brodskii AV, Korstyuk VA, Potapovitch AI. Chelating and free radical scavenging mechanism of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol. 1989;38:1763–8.

    Article  CAS  Google Scholar 

  • Ali MN, Nazam N, Lone MI, Shaikh S, Ahmad W. Evidence of apoptosis in some cell types due to pentachlorophenol (PCP) in Heteropneustes fossilis. Saudi J Biol Sci. 2013;20:45–9.

    Article  Google Scholar 

  • Babich H, Borenfreund E. In vitro cytotoxicity of organic pollutants to bluegill sunfish (BF-2) cells. Environ Res. 1987;42:229–37.

    Article  CAS  PubMed  Google Scholar 

  • Bestwick CS, Milne L. Quercetin modifies reactive oxygen levels but exerts only partial protection against oxidative stress within HL-60 cells. Biochim Biophys Acta. 2001;1528:49–59.

    Article  CAS  PubMed  Google Scholar 

  • Black MC, Björkroth K, Oikari A. Probing the routes, rates, and mechanisms of xenobiotic elimination by rainbow trout (Oncorhynchus mykiss) with a physiological chamber. In: Hughes JS, Biddinger GR, Monas E, editors. Environmental toxicology and risk assessment – Third volume, ASTM STP 1218. Philadelphia: American Society for Testing and Materials; 1995. p. 351–64.

    Google Scholar 

  • Boots AW, Li H, Schins RPF, Duffin R, Heemskerk JWM, Bast A, et al. The quercetin paradox. Toxicol Appl Pharmacol. 2007;222:89–96.

    Article  CAS  PubMed  Google Scholar 

  • Borenfreund E, Puerner JA. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett. 1985;24:119–24.

    Article  CAS  PubMed  Google Scholar 

  • Bors W, Michel C, Saran M. Flavonoids antioxidants: rate constants for reactions with oxygen radicals. Methods Enzymol. 1994;234:420–9.

    Article  CAS  PubMed  Google Scholar 

  • Caminada D, Escher C, Fent K. Cytotoxicity of pharmaceuticals found in aquatic systems: comparison of PLHC-1 and RTG-2 fish cell lines. Aquat Toxicol. 2006;79:114–23.

    Article  CAS  PubMed  Google Scholar 

  • Castaño A, Gómez-Lechón MJ. Comparison of basal cytotoxicity data between mammalian and fish cell lines: a literature survey. Toxicol in Vitro. 2005;19:695–705.

    Article  PubMed  Google Scholar 

  • Castaño A, Vega MM, Tarazona JV. Acute toxicity of selected metals and phenols on RTG-2 and CHSE-214 fish cell lines. Bull Environ Contam Toxicol. 1995;55:222–9.

    PubMed  Google Scholar 

  • Chen J, Jiang J, Zhang F, Yu H, Zhang J. Cytotoxic effects of environmentally relevant chlorophenols on L929 cells and their mechanisms. Cell Biol Toxicol. 2004;20:183–96.

    Article  PubMed  Google Scholar 

  • Clemedson C, Barile FA, Ekwall B, Gómez-Lechón MJ, Hall T, Imai K, et al. MEIC evaluation of acute systemic toxicity. III. In vitro results from 16 additional methods used to test the first 30 reference chemicals and a comparative cytotoxicity analysis. Altern Lab Anim. 1998;26(1):93–129.

    Google Scholar 

  • Cravedi JP, Lafuente A, Baradat M, Hillenweck A, Perdu-Durand E. Biotransformation of pentachlorophenol, aniline and biphenyl in isolated rainbow trout (Oncorhynchus mykiss) hepatocytes: comparison with in vivo metabolism. Xenobiotica. 1999;29:499–509.

    Article  CAS  PubMed  Google Scholar 

  • Deichman WB, Keplinger ML. Phenols and phenolic compounds. In: Clayton GD, Cayton FE, editors. Patty’s industrial hygiene and toxicology. New York: John Wiley and Sons; 1981. p. 2567–627.

    Google Scholar 

  • Dorsey WC, Tchounwou PB. Pentachlorophenol-induced cytotoxic, mitogenic, and endocrine-disrupting activities in channel catfish, Ictalurus punctatus. Int J Environ Res Public Health. 2004;1:90–9.

    Article  CAS  PubMed  Google Scholar 

  • Dorsey WC, Tchounwou PB, Sutton D. Mitogenic and cytotoxic effects of pentachlorophenol to AML 12 mouse hepatocytes. Int J Environ Res Public Health. 2004;1(2):100–5.

    Article  CAS  PubMed  Google Scholar 

  • Dwyer FJ, Mayer FL, Sappington LC, Buckler DR, Bridges CM, Greer IE, et al. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part I. Acute toxicity of five chemicals. Arch Environ Contam Toxicol. 2005;48:143–54.

    Article  CAS  PubMed  Google Scholar 

  • Fent K, Hunn J. Cytotoxicity of organic environmental chemicals to fish liver cells (PLHC-1). Mar Environ Res. 1996;42:377–82.

    Article  CAS  Google Scholar 

  • Fernández Freire P, Labrador V, Perez Martin JM, Hazen MJ. Cytotoxic effects in mammalian Vero cells exposed to pentachlorophenol. Toxicology. 2005;210:37–44.

    Article  PubMed  Google Scholar 

  • Ge J, Pan J, Fei Z, Wu G, Giesy JP. Concentrations of pentachlorophenol (PCP) in fish and shrimp in Jiangsu Province, China. Chemosphere. 2007;69:164–9.

    Article  CAS  PubMed  Google Scholar 

  • Glickman AH, Statham CN, Wu A, Lech JJ. Studies on the uptake, metabolism, and disposition of pentachlorophenol and pentachloroanisole in rainbow trout. Toxicol Appl Pharmacol. 1977;41:649–58.

    Article  CAS  PubMed  Google Scholar 

  • Hanson R, Dodoo DK, Essumang DK, Blay J, Yankson K. The effect of some selected pesticides on the growth and reproduction of fresh water Oreochromis niloticus, Chrysicthys nigrodigitatus and Clarias gariepinus. Bull Environ Contam Toxicol. 2007;79:544–7.

    Article  CAS  PubMed  Google Scholar 

  • Hodson PV, Blunt BR. Temperature-induced changes in pentachlorophenol chronic toxicity to early life stages of rainbow trout. Aquat Toxicol. 1981;1:113–27.

    Article  CAS  Google Scholar 

  • Johnson WW, Finley MT. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Washington, DC: US Department of Interior, Fish and Wildlife Service; 1980. p. 98.

    Google Scholar 

  • Kook D, Wolf AH, Yu AL, Neubauer AS, Priglinger SG, Kampik A, et al. The protective effect of quercetin against oxidative stress in the human RPE in vitro. Investig Ophthalmol Vis Sci. 2008;49(4):1712–20.

    Article  Google Scholar 

  • Koss G, Koransky W. Pentachlorophenol in different species of vertebrates after administration of hexachlorobenzene and pentachlorobenzene. In: Rao KR, editor. Pentachlorophenol: chemistry, pharmacology, and environmental toxicology. New York: Plenum Press; 1978. p. 131–7.

    Chapter  Google Scholar 

  • Kulikov SM, Holder BJR. Kinetics of acid-assisted hydrolysis of pentachlorophenol in aqueous media. Kinet Catal. 2008;49:361–5.

    Article  CAS  Google Scholar 

  • Lampi P, Vartiainen T, Tuomisto J. Population exposure to chlorophenols, dibenzo-p-dioxins and dibenzofurans after a prolonged ground water pollution by chlorophenols. Chemosphere. 1990;20:625–34.

    Article  CAS  Google Scholar 

  • Lin P, Waidyanatha S, Pollack G, Swenberg J, Rappaport S. Dose-specific production of chlorinated quinone and semiquinone adducts in rodent livers following administration of pentachlorophenol. Toxicol Sci. 1999;47:126–33.

    Article  CAS  PubMed  Google Scholar 

  • Michel C, Herzog S, de Capitani C, Burkhardt-Holm P, Pietsch C. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro. In press in PLOS ONE 2014.

  • Miura YH, Tomita I, Watanabe T, Hirayama T, Fukui S. Active oxygen generation by flavonoids. Biol Pharm Bull. 1998;21:93–6.

    Article  CAS  PubMed  Google Scholar 

  • Mothersill C, Lyng F, Lyons M, Cottell D. Growth and differentiation of epidermal cells from the rainbow trout established as explants and maintained in various media. J Fish Biol. 1995;46(6):1011–25.

    Article  Google Scholar 

  • Pierce Jr RH, Victor DM. The fate of pentachlorophenol in an aquatic ecosystem. In: Rao KR, editor. Pentachlorophenol: chemistry, pharmacology, and environmental toxicology. New York: London Plenum Press; 1978. p. 41–52.

    Chapter  Google Scholar 

  • Pietsch C, Bucheli T, Wettstein F, Burkhardt-Holm P. Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON). Toxicol Appl Pharmacol. 2011;256:24–34.

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot AT. Pentachlorophenol poisoning. Toxicol Rev. 2003;22:3–11.

    Article  CAS  PubMed  Google Scholar 

  • Renner G, Mücke W. Transformation of pentachlorophenol. Toxicol Environ Chem. 1986;11:9–29.

    Article  CAS  Google Scholar 

  • Repetto G, Jos A, Hazen MJ, Molero ML, del Peso A, Salguero M, et al. A test battery for the ecotoxicological evaluation of pentachlorophenol. Toxicol in Vitro. 2001;15:503–9.

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Sudo M, Shigeoka T, Yamauchi F. In vitro cytotoxicity of chlorophenols to goldfish GF-scale (GFS) cells and quantitative structure-activity relationships. Environ Toxicol Chem. 1991;10:235–41.

    Article  CAS  Google Scholar 

  • Sai-Kato K, Umemura T, Takagi A, Hasegawa R, Tanimura A, Kurokawa Y. Pentachlorophenol-induced oxidative DNA damage in mouse liver and protective effect of antioxidants. Food and Chemical Toxicology. 1995;33:877--882.

  • Schreer A, Tinson C, Sherry JP, Schirmer K. Application of Alamar blue/5-carboxyfluorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout. Anal Biochem. 2005;344:76–85.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder IE, van Tonder JJ, Steenkamp V. Comparative toxicity of pentachlorophenol with its metabolites tetrachloro-1,2-hydroquinone and tetrachloro-1,4-benzoquinone in HepG2 cells. Open Toxicol J. 2012;5:11–20.

    Article  CAS  Google Scholar 

  • Schummer C, Sadiki M, Mirabel P, Millet M. Analysis of t-butyldimethylsilyl derivatives of chlorophenols in the atmosphere of urban and rural areas in east of France. Chromatographia. 2006;63:189–95.

    Article  CAS  Google Scholar 

  • Segner H, Lenz D. Cytotoxicity assays with the rainbow trout R1 cell line. Toxicol in Vitro. 1993;7:537–40.

    Article  CAS  PubMed  Google Scholar 

  • Sestill P, Guidarelli A, Dacha M, Cantoni O. Quercetin prevents DNA single strand breakage and cytotoxicity caused by tert-butylhydroperoxide: free radical scavenging versus iron chelating mechanism. Free Radic Biol Med. 1998;25(2):196–200.

    Article  Google Scholar 

  • Smith R, Ord M. Morphological alterations in the mitochondria of Amoeba proteus induced by uncoupling agents. J Cell Sci. 1979;37:217–29.

    CAS  PubMed  Google Scholar 

  • Song ZH. Effects of pentachlorophenol on Galba pervia, Tubifex sinicus and Chironomus plumousus larvae. Bull Environ Contam Toxicol. 2007;79:278–82.

    Article  CAS  PubMed  Google Scholar 

  • Spehar RL, Nelson HP, Swanson MJ, Renoos JW. Pentachlorophenol toxicity to amphipods and fathead minnows at different test pH values. Environ Toxicol Chem. 1985;4:389–97.

    Article  CAS  Google Scholar 

  • Tsai CH, Lin PH, Waidyanatha S, Rappaport SM. Characterization of metabolic activation of pentachlorophenol to quinones and semiquinones in rodent liver. Chem Biol Interact. 2001;134:55–71.

    Article  CAS  PubMed  Google Scholar 

  • Uhl S, Schmid P, Schlatter C. Pharmacokinetics of pentachlorophenol in man. Arch Toxicol. 1986;58:182–6.

    Article  CAS  PubMed  Google Scholar 

  • Umemura T, Kai S, Hasegawa R, Sai K, Kurokawa Y, Williams GM. Pentachlorophenol (PCP) produces liver oxidative stress and promotes but does not initiate hepatocarcinogenesis in B6C3F1 mice. Carcinogenesis. 1999;20:1115–20.

    Article  CAS  PubMed  Google Scholar 

  • US EPA. Environmental Protection Agency. Basic information about pentachlorophenol in drinking water. US Environmental Protection Agency Website. Available at http://water.epa.gov/drink/contaminants/basicinformation/pentachlorophenol.cfm. Accessed at Nov 20, 2013.

  • van Ommen B, van Bladeren PJ. Possible reactive intermediates in the oxidative biotransformation of hexachlorobenzene. Drug Metabol Drug Interact. 1989;7:213–43.

    PubMed  Google Scholar 

  • van Ommen B, van Bladeren PJ, Temmink JH, Muller F. Formation of pentachlorophenol as the major product of microsomal oxidation of hexachlorobenzene. Biochem Biophys Res Commun. 1985;126:25–32.

    Article  PubMed  Google Scholar 

  • van Ommen B, Adang A, Müller F, van Bladeren PJ. The microsomal metabolism of pentachlorophenol and its covalent binding to protein and DNA. Chem Biol Interact. 1986;60:1–11.

    Article  PubMed  Google Scholar 

  • Vislisel JM, Schafer FQ, Buettner GR. A simple and sensitive assay for ascorbate using a plate reader. Anal Biochem. 2007;365(1):31–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YJ, Ho YS, Chu SW, Lien HJ, Liu TH, Lin JK. Induction of glutathione depletion, p53 protein accumulation and cellular transformation by tetrachlorohydroquinone, a toxic metabolite of pentachlorophenol. Chem Biol Interact. 1997;105:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Ho YS, Jeng JH, Su HJ, Lee CC. Different cell death mechanisms and gene expression in human cells induced by pentachlorophenol and its major metabolite, tetrachlorohydroquinone. Chem Biol Interact. 2000;128:173–88.

    Article  CAS  PubMed  Google Scholar 

  • Weinbach EC. The effect of pentachlorophenol on oxidative phosphorylation. J Biol Chem. 1954;210:300–15.

    Google Scholar 

  • WHO. Pentachlorophenol in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva: World Health Organization; 2003. WHO/SDE/WSH/03.04/62).

    Google Scholar 

  • WHO. Pentachlorophenol. In: Environmental health criteria. Geneva: World Health Organization; 1987: pp. 2–4.

  • Winkler BS, Orselli SM, Rex TS. The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med. 1994;17(4):333–49.

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Ao XL, Ho YS. Use of citation per publication as an indicator to evaluate pentachlorophenol research. Scientometrics. 2008;75:67–80.

    Article  CAS  Google Scholar 

  • Zheng M, Zhu L. Toxicity effects of pentachlorophenol on Brachydanio rerio. Yingyong Shengtai Xuebao. 2005;16:1967–71.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors owe special thanks to the Bundesamt für Umwelt, Wald und Landschaft (BUWAL) in Bern (Switzerland) for financial support of the project “MicroPoll” (project no. StoBoBio/2004.H.15a) which allowed the initial investigations on effects of PCP on RTL W-1 cells. Grateful acknowledgment is also made for the financial support by the “Fonds zur Förderung von Lehre und Forschung” that belongs to the Freiwillige Akademische Gesellschaft (FAG) in Basel (Switzerland) which enabled us to purchase the plate reader Infinite M200 from Tecan Group Ltd. (Switzerland). Furthermore, the authors like to thank Prof. Kristin Schirmer from the Swiss Federal Institute of Aquatic Science and Technology (Eawag, Dübendorf, Switzerland) for providing the liver cell line established from rainbow trout. In addition, we are grateful to Heidi Schiffer for maintaining the cell cultures and additional help in the laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constanze Pietsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietsch, C., Hollender, J., Dorusch, F. et al. Cytotoxic effects of pentachlorophenol (PCP) and its metabolite tetrachlorohydroquinone (TCHQ) on liver cells are modulated by antioxidants. Cell Biol Toxicol 30, 233–252 (2014). https://doi.org/10.1007/s10565-014-9283-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-014-9283-4

Keywords

Navigation