Skip to main content

Advertisement

Log in

Cell death mechanisms in eukaryotes

  • Review
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Like the organism they constitute, the cells also die in different ways. The death can be predetermined, programmed, and cleanly executed, as in the case of apoptosis, or it can be traumatic, inflammatory, and sudden as many types of necrosis exemplify. Nevertheless, there are a number of cell deaths—some of them bearing a resemblance to apoptosis and/or necrosis, and many, distinct from each—that serve a multitude of roles in either supporting or disrupting the homoeostasis. Apoptosis is coordinated by death ligands, caspases, b-cell lymphoma-2 (Bcl-2) family proteins, and their downstream effectors. Events that can lead to apoptosis include mitotic catastrophe and anoikis. Necrosis, although it has been considered an abrupt and uncoordinated cell death, has many molecular events associated with it. There are cell death mechanisms that share some standard features with necrosis. These include methuosis, necroptosis, NETosis, pyronecrosis, and pyroptosis. Autophagy, generally a catabolic pathway that operates to ensure cell survival, can also kill the cell through mechanisms such as autosis. Other cell-death mechanisms include entosis, ferroptosis, lysosome-dependent cell death, and parthanatos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel Wahab SI, Abdul AB, Alzubairi AS, Mohamed Elhassan M, Mohan S. In vitro ultramorphological assessment of apoptosis induced by zerumbone on (HeLa). J Biomed Biotechnol. 2009;2009.

  • Aits S, Jaattela M. Lysosomal cell death at a glance. J Cell Sci. 2013;126(9):1905–12.

  • Akimoto M, Iizuka M, Kanematsu R, Yoshida M, Takenaga K. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS One. 2015;10(5):e0126605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baek SH, Bae ON, Kim EK, Yu SW. Induction of mitochondrial dysfunction by poly(ADP-ribose) polymer: implication for neuronal cell death. Mol Cell. 2013;36(3):258–66.

  • Balvan J, Krizova A, Gumulec J, Raudenska M, Sladek Z, Sedlackova M, et al. Multimodal holographic microscopy: distinction between apoptosis and oncosis. PLoS One. 2015;10(3):e0121674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banfalvi G. Methods to detect apoptotic cell death. Apoptosis. 2017;22(2):306–23.

  • Barbu EA, Dominical VM, Mendelsohn L, Thein SL. Neutrophil extracellular traps are a heterogeneous feature in sickle cell disease. J Immunol. 2018;200(1 Supplement):42.9.

    Google Scholar 

  • Belizário J, Vieira-Cordeiro L, Enns S. Necroptotic cell death signaling and execution pathway: lessons from knockout mice. Mediat Inflamm. 2015;2015:128076.

  • Bernd N, Rohrbach S. The scientist’s guide to cardiac metabolism. In: Schwarzer M, Doenst T, editors. Elsevier Inc., 2016. p. 34–5.

  • Bonora M, Pinton P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol. 2014;4:302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73(11–12):2195–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi S, Kitanaka C, Noguchi K, Mochizuki T, Nagashima Y, Shirouzu M, et al. Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene. 1999;18(13):2281–90.

    Article  CAS  PubMed  Google Scholar 

  • Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem. 2002;277(38):34793–9.

    Article  CAS  PubMed  Google Scholar 

  • Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, et al. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 2018;32(9–10):602–19.

  • de Oliveira SI, Kiffer LFMV, Assumpção JAF, Magalhães KG, Luzete BC, Ito MK, et al. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 2018;8:1952.

    Article  CAS  Google Scholar 

  • Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation. 2018;15:199.

  • Domagala A, Fidyt K, Bobrowicz M, Stachura J, Szczygiel K, Firczuk M. Typical and atypical inducers of lysosomal cell death: a promising anticancer strategy. Int J Mol Sci. 2018;19(8):2256.

  • Duprez L, Vanlangenakker N, Festjens N, Herreweghe F Van, Berghe T Vanden, Vandenabeele P. Essentials of apoptosis: a guide for basic and clinical research. In: Yin X-M, Dong Z, editors. Essentials Apoptosis A Guid. Basic Clin. Res. 2nd ed. Totowa: Humana Press; 2009. p. 599–633.

  • Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun.  2018;500(1):26–34.

  • Edwan JH, Goldbach-Mansky R, Colbert RA. Identification of interleukin-1β-producing monocytes that are susceptible to pyronecrotic cell death in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheum. 2015;67(12):3286–97.

  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar ML, Echeverría OM, Vázquez-Nin GH. Necrosis as programmed cell death. Cell Death - Autophagy, Apoptosis Necrosis. InTech; 2015.

  • Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171(8):2000–16.

  • Fröhwein U, Schulte-Hermann R, Mayer M, Piredda L, Bursch W, Fazi B, et al. Cell death and autophagy: cytokines, drugs, and nutritional factors. Toxicology. 2008;254(3):147–57.

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A. Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol. 2014;35:24–32.

  • Galluzzi L, Kepp O, Chan FK-M, Kroemer G. Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol Mech Dis. 2016;12(1):103–30.

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.

  • Gao B, Yang X, Cheng X, Gao Y, Liao G, Ou Y. Phycocyanin inhibits tumorigenic potential of pancreatic cancer cells: role of apoptosis and autophagy. Sci Rep. 2016;6:34564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garanina AS, Kisurina-Evgenieva OP, Erokhina MV, Smirnova EA, Factor VM, Onishchenko GE. Consecutive entosis stages in human substrate-dependent cultured cells. Sci Rep. 2017;7:12555.

  • Gilmore AP. Anoikis. Cell Death Differ. 2005;12:1473–7.

  • Gómez-Sintes R, Ledesma MD, Boya P. Lysosomal cell death mechanisms in aging. Ageing Res Rev. 2016;32:150–68.

  • Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7(12).

  • Griffiths EJ, Halestrap AP. Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993;25(12):1461–9.

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Young T, Yel L, Su H, Gollapudi S. Differential sensitivity of naïve and subsets of memory CD4+ and CD8+ T cells to hydrogen peroxide-induced apoptosis. Genes Immun. 2007;8(7):560–9.

    Article  CAS  PubMed  Google Scholar 

  • Hamann JC, Surcel A, Chen R, Teragawa C, Albeck JG, Robinson DN, et al. Entosis is induced by glucose starvation. Cell Rep. 2017;20(1):201–10.

  • Han M, Gao H, Xie J, Yuan Y, Ping YQ, Quan GM, et al. Hispidulin induces ER stress-mediated apoptosis in human hepatocellular carcinoma cells in vitro and in vivo by activating AMPK signaling pathway. Acta Pharmacol Sin. 2019;40(5):666–76.

  • Healy LD, Puy C, Fernández JA, Mitrugno A, Keshari RS, Taku NA, et al. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem. 2017;292(21):8616–29.

  • Heckmann BL, Tummers B, Green DR. Crashing the computer: apoptosis vs. necroptosis in neuroinflammation. Cell Death Differ. 2019;26(1):41–52.

  • Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol. 2004;165(3):347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang KJ, Wei YH, Chiu YC, Wu SR, Shieh D. Bin. Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomater Sci Royal Society of Chemistry. 2019;7(4):1311–22.

    Article  CAS  PubMed  Google Scholar 

  • Hwang DW, So KS, Kim SC, Park KM, Lee YJ, Kim SW, et al. Autophagy induced by CX-4945, a casein kinase 2 inhibitor, enhances apoptosis in pancreatic cancer cell lines. Pancreas. 2017;46(4):575–81.

  • Ianzini F, Kosmacek EA, Nelson ES, Napoli E, Erenpreisa J, Kalejs M, et al. Activation of meiosis-specific genes is associated with depolyploidization of human tumor cells following radiation-induced mitotic catastrophe. Cancer Res. 2009;69(6):2296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol. 2017. p. 143–70.

  • Iurlaro R, Muñoz-Pinedo C. Cell death induced by endoplasmic reticulum stress. FEBS J. 2016;283:2640–52.

  • Jamali T, Kavoosi G, Safavi M, Ardestani SK. In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA. Sci Rep. 2018;8:15787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang HY, Yang Y, Zhang YY, Xie Z, Zhao XY, Sun Y, et al. The dual role of poly(ADP-ribose) polymerase-1 in modulating parthanatos and autophagy under oxidative stress in rat cochlear marginal cells of the stria vascularis. Redox Biol. 2018;14:361–70.

  • Kalai M, Van Loo G, Vanden Berghe T, Meeus A, Burm W, Saelens X, et al. Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ. 2002;9(9):981–94.

  • Kearney CJ, Cullen SP, Clancy D, Martin SJ. RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis. FEBS J. 2014;281(21):4921–34.

  • Khalili M, Radosevich JA. Pyronecrosis. Apoptosis beyond many ways cells die. Wiley, 2018. p. 225–36.

  • Kheloufi M, Boulanger CM, Codogno P, Rautou PE. Autosis occurs in the liver of patients with severe anorexia nervosa. Hepatology. 2015;62(2):657–8.

    Article  PubMed  Google Scholar 

  • Krajarng A, Imoto M, Tashiro E, Fujimaki T, Shinjo S, Watanapokasin R. Apoptosis induction associated with the ER stress response through up-regulation of JNK in HeLa cells by gambogic acid. BMC Complement Altern Med. 2015;15(1):26.

  • Krishna S, Overholtzer M. Mechanisms and consequences of entosis. Cell Mol Life Sci. 2016;73(11–12):2379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16(1):3–11.

  • Kumaraswamy K, Archana M, Bastian YT. Various methods available for detection of apoptotic cells- a review. Indian J Cancer.  2013;50(3):274.

  • Lertsuwan J, Lertsuwan K, Sawasdichai A, Tasnawijitwong N, Lee KY, Kitchen P, et al. CX-4945 induces methuosis in cholangiocarcinoma cell lines by a CK2-independent mechanism. Cancers (Basel). 2018;10(9):283.

    Article  CAS  Google Scholar 

  • Li Y, Zhang Y, Gan Q, Xu M, Ding X, Tang G, et al. C. elegans-based screen identifies lysosome-damaging alkaloids that induce STAT3-dependent lysosomal cell death. Protein Cell.  2018;9(12):1013–26.

  • Li Q, Jiao Y, Yu Y, Wang G, Yu Y. Hydrogen-rich medium alleviates high glucose-induced oxidative stress and parthanatos in rat Schwann cells in vitro. Mol Med Rep. 2019a;19(1):338–44.

  • Li Z, Mbah NE, Overmeyer JH, Sarver JG, George S, Trabbic CJ, et al. The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer. 2019b;19(1):77.

  • Lieberman J. Granzyme A activates another way to die. Immunol Rev. 2010;235(1):93–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberthal W, Menza SA, Levine JS. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol Physiol. 2017;274(2):F315–27.

    Article  Google Scholar 

  • Lin L, Baehrecke EH. Autophagy, cell death, and cancer. Mol Cell Oncol. 2015;2:e985913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin Y, Padilla M. Necroptosis. In: Schwab M, editor. Encycl. Cancer. Berlin, Heidelberg. 2017. p. 3029–33.

  • Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS, et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem. 2004;279(11):10822–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Levine B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 2015a;22(3):367–76.

  • Liu Y, Shoji-Kawata S, Sumpter RM, Wei Y, Ginet V, Zhang L, et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci. 2013;110(51):20364–71.

  • Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, et al. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano. 2018;12(12):12181–92.

  • Liu J, Wang L, Zhang Y, Li S, Sun F, Wang G, et al. Induction of entosis in prostate cancer cells by nintedanib and its therapeutic implications. Oncol Lett. 2019;17(3):3151–62.

  • Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104(4):487–501.

    Article  CAS  PubMed  Google Scholar 

  • Loomis WP, den Hartigh AB, Cookson BT, Fink SL. Diverse small molecules prevent macrophage lysis during pyroptosis. Cell Death Dis. 2019;10(4):326.

  • Maltese WA, Overmeyer JH. Methuosis. Am J Pathol. 2014a;184(6):1630–42.

  • Maltese WA, Overmeyer JH. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. Am J Pathol. 2014b;184(6):1630–42.

  • Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61–75.

  • Marinković M, Šprung M, Buljubašić M, Novak I. Autophagy modulation in cancer: current knowledge on action and therapy. Oxidative Med Cell Longev. 2018;2018:1–18.

    Article  CAS  Google Scholar 

  • Martinez MM, Reif RD, Pappas D. Detection of apoptosis: a review of conventional and novel techniques. Anal Methods. 2010;2(8):996–1004.

    Article  CAS  Google Scholar 

  • Martinez NE, Zimmermann TJ, Goosmann C, Alexander T, Hedberg C, Ziegler S, et al. Tetrahydroisoquinolines: new inhibitors of neutrophil extracellular trap (NET) formation. ChemBioChem. 2017;18(10):888–93.

  • Martinvalet D. ROS signaling during granzyme B-mediated apoptosis. Mol Cell Oncol. 2015;2(3):e992639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masuda S, Nakazawa D, Shida H, Miyoshi A, Kusunoki Y, Tomaru U, et al. NETosis markers: quest for specific, objective, and quantitative markers. Clin Chim Acta. 2016;459:89–93.

  • Mbah NE, Overmeyer JH, Maltese WA. Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones. Cell Biol Toxicol. 2017;33(3):263–82.

    Article  CAS  PubMed  Google Scholar 

  • McKenzie BA, Mamik MK, Saito LB, Boghozian R, Monaco MC, Major EO, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci. 2018;115(26):E6065–74.

  • Medina CB, Ravichandran KS. Do not let death do us part: “find-me” signals in communication between dying cells and the phagocytes. Cell Death Differ. 2016;23(6):979–89.

  • Michelet X, Tuli A, Gan H, Geadas C, Sharma M, Remold HG, et al. Lysosome-mediated plasma membrane repair is dependent on the small GTPase Arl8b and determines cell death type in mycobacterium tuberculosis infection. J Immunol The American Association of Immunologists. 2018;200(9):3160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra AP, Salehi B, Sharifi-Rad M, Pezzani R, Kobarfard F, Sharifi-Rad J, et al. Programmed cell death, from a cancer perspective: an overview. Mol Diagnosis Ther. 2018; 22(3):281–95.

  • Motani K, Kushiyama H, Imamura R, Kinoshita T, Nishiuchi T, Suda T. Caspase-1 protein induces apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-mediated necrosis independently of its catalytic activity. J Biol Chem. 2011;286(39):33963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol Oncol 2019;12:34.

  • Muñoz-Pinedo C, Martin SJ. Autosis: a new addition to the cell death tower of babel. Cell Death Dis. 2014;5(7):e1319.

  • Nagata S. Apoptosis and clearance of apoptotic cells. Annu Rev Immunol. 2018;36(1):489–517.

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434(7033):652–8.

    Article  CAS  PubMed  Google Scholar 

  • Oslowski CM, Urano F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 2011. p. 71–92.

  • Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 2007;131(5):966–79.

    Article  CAS  PubMed  Google Scholar 

  • Overmeyer JH, Young AM, Bhanot H, Maltese WA. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells. Mol Cancer. 2011;10:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perdomo J, Leung HHL, Ahmadi Z, Yan F, Chong JJH, Passam FH, et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun. 2019;10:1322.

  • Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359(5):473–81.

  • Porter GA, Beutner G. Cyclophilin D, somehow a master regulator of mitochondrial function. Biomolecules. 2018;8(4):176.

  • Rathkey JK, Zhao J, Liu Z, Chen Y, Yang J, Kondolf HC, et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol. 2018;3(26):eaat2738.

  • Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta - Mol. Cell Res. 2013;1833(12):3460–70.

    Article  CAS  Google Scholar 

  • Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci. 2015;112(36):11389–94.

  • Satoh T, Kambe N, Matsue H. NLRP3 activation induces ASC-dependent programmed necrotic cell death, which leads to neutrophilic inflammation. Cell Death Dis. 2013;4:e644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5.

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj V, Armistead MY, Cohenford M, Murray E. Arsenic trioxide (As2O3) induces apoptosis and necrosis mediated cell death through mitochondrial membrane potential damage and elevated production of reactive oxygen species in PLHC-1 fish cell line. Chemosphere. 2013;90(3):1201–9.

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans. 2018;46(2):207–15.

  • Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245–54.

    Article  CAS  PubMed  Google Scholar 

  • Siegel RM, Lenardo MJ. Apoptosis signaling pathways. Curr Protoc Immunol. United States; 2002. p. Unit 11.9C.

  • Silva-Pavez E, Villar P, Trigo C, Caamaño E, Niechi I, Pérez P, et al. CK2 inhibition with silmitasertib promotes methuosis-like cell death associated to catastrophic massive vacuolization of colorectal cancer cells. Cell Death Dis. 2019a;10(2):73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sondo E, Bertelli R, Pesce E, Ghiggeri GM, Pedemonte N. High-content screening identifies vanilloids as a novel class of inhibitors of net formation. Front Immunol. 2019;10:963.

  • Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc– activity. Curr Biol. 2018;28(15):2388–2399.e5.

  • Takeyama N, Matsuo N, Tanaka T. Oxidative damage to mitochondria is mediated by the Ca 2+ -dependent inner-membrane permeability transition. Biochem J. 1993;294(3):719–25.

  • Tinari A, Giammarioli AM, Manganelli V, Ciarlo L, Malorni W. Chapter one analyzing morphological and ultrastructural features in cell death. Methods Enzymol. 2008;442:1–26.

    Article  PubMed  Google Scholar 

  • Toné S, Sugimoto K, Tanda K, Suda T, Uehira K, Kanouchi H, et al. Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res. 2007;313(16):3635–44.

  • Uribe P, Cabrillana M, Fornés M, Treulen F, Boguen R, Isachenko V, et al. Nitrosative stress in human spermatozoa causes cell death characterized by induction of mitochondrial permeability transition-driven necrosis. Asian J Androl. 2018;20(6):600.

  • Vakifahmetoglu H, Olsson M, Tamm C, Heidari N, Orrenius S, Zhivotovsky B. DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death Differ. 2008;15(3):555–66.

  • Van Camp G, Conrad M, Declerck K, Van Herck S, Krysko DV, Lahtela-Kakkonen M, et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest. 2018;128(8):3341–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanden Berghe T, Grootjans S, Goossens V, Dondelinger Y, Krysko DV, Takahashi N, et al. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods. 2013;61(2):117–29.

    Article  CAS  Google Scholar 

  • Vandivier RW, Henson PM, Douglas IS. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest. 2006;129(6):1673–82.

  • Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. P53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149(7):1536–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virág L, Robaszkiewicz A, Rodriguez-Vargas JM, Oliver FJ. Poly(ADP-ribose) signaling in cell death. Mol Asp Med. 2013;34(6):1153–67.

    Article  CAS  Google Scholar 

  • Viswanathan VS, Clemons PA, Shimada K, SriRamaratnam R, Cornish VW, Clish CB, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–31.

    PubMed  PubMed Central  Google Scholar 

  • Wada N, Kawano Y, Fujiwara S, Kikukawa Y, Okuno Y, Tasaki M, et al. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells. Int J Oncol. 2015;46(3):963–72.

  • Wang Y, Qiu Q, Shen JJ, Li DD, Jiang XJ, Si SY, et al. Cardiac glycosides induce autophagy in human non-small cell lung cancer cells through regulation of dual signaling pathways. Int J Biochem Cell Biol. 2012;44(11):1813–24.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ning X, Chen A, Huang H, Ni C, Zhou C, et al. Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression. Sci Rep. 2015;5:12223.

  • Wang F, Gómez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Traffic. 2018;19(12):918–31.

  • Warne J, Pryce G, Hill JM, Shi X, Lennerås F, Puentes F, et al. Selective inhibition of the mitochondrial permeability transition pore protects against neurodegeneration in experimental multiple sclerosis. J Biol Chem American Society for Biochemistry and Molecular Biology Inc. 2016;291(9):4356–73.

    Article  CAS  PubMed  Google Scholar 

  • Webster JD, Solon M, Haller S, Newton K. Detection of necroptosis by phospho-RIPK3 immunohistochemical labeling. Methods Mol Biol. 2018. p. 153–60.

  • Welin A, Eklund D, Stendahl O, Lerm M. Human macrophages infected with a high burden of ESAT-6-expressing M. tuberculosis undergo caspase-1- and cathepsin B-independent necrosis. PLoS One. 2011;6(5):e20302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT-H, Taxman DJ, et al. NLRP3 (NALP3, cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 2009;183(3):2008–15.

  • Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369–79.

  • Xu Y, Zhang J, Ma L, Zhao S, Li S, Huang T, et al. The pathogenesis of necroptosis-dependent signaling pathway in cerebral ischemic disease. Behav Neurol. 2018;2018.

  • Yang Y, Jiang G, Zhang P, Fan J. Programmed cell death and its role in inflammation. Mil Med Res. 2015;2:1–1.

    Article  Google Scholar 

  • Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122(16):2784–94.

    Article  CAS  PubMed  Google Scholar 

  • Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER Stress. J Biol Chem . 2001;276(17):13935–40.

  • Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006;8(10):1124–32.

    Article  CAS  PubMed  Google Scholar 

  • Zeng GZ, Pan XL, Tan NH, Xiong J, Zhang YM. Natural biflavones as novel inhibitors of cathepsin B and K. Eur J Med Chem. 2006;41(11):1247–52.

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Luk BT, Hamidy M, Zhang L, Spector SA. Induction of a Na+/K+-ATPase-dependent form of autophagy triggers preferential cell death of human immunodeficiency virus type-1-infected macrophages. Autophagy. 2018;14(8):1359–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong H, Song R, Pang Q, Liu Y, Zhuang J, Chen Y, et al. Propofol inhibits parthanatos via ROS–ER–calcium–mitochondria signal pathway in vivo and vitro. Cell Death Dis. 2018;9(10):932.

  • Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci. 2017;3(3):232–43.

Download references

Acknowledgements

The authors would like to thank Prof Shree Kumar Apte (UM-DAE CEBS) for critical reading of the manuscript and UM-DAE CEBS for financial support. All figures used in this article were created using BioRender software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu Lopus.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirmala, J.G., Lopus, M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol 36, 145–164 (2020). https://doi.org/10.1007/s10565-019-09496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-019-09496-2

Keywords

Navigation