Skip to main content
Log in

Nitric Oxide–GAPDH–Siah: A Novel Cell Death Cascade

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an extremely abundant glycolytic enzyme, and exemplifies the class of proteins with multiple, seemingly unrelated functions. Recent studies indicate that it is a major intracellular messenger mediating apoptotic cell death. This paper reviews the GAPDH cell death cascade and discusses its clinical relevance.

2. A wide range of apoptotic stimuli activate NO formation, which S-nitrosylates GAPDH. The S-nitrosylation abolishes catalytic activity and confers upon GAPDH the ability to bind to Siah, an E3-ubiquitin-ligase, which translocates GAPDH to the nucleus. In the nucleus, GAPDH stabilizes the rapidly turning over Siah, enabling it to degrade selected target proteins and affect apoptosis.

3. The cytotoxicity of mutant Huntingtin (mHtt) requires nuclear translocation which appears to be mediated via a ternary complex of GAPDH—Siah—mHtt. The neuroprotective actions of the monoamine oxidase inhibitor R-(—)-deprenyl (deprenyl) reflect blockade of GAPDH—Siah binding. Thus, novel cytoprotective therapies may emerge from agents that prevent GAPDH—Siah binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  • Bae, B. I., Xu, H., Igarashi, S., Fujimuro, M., Agrawal, N., Taya, Y., Hayward, S. D., Moran, T. H., Montell, C., Ross, C. A., Snyder, S. H., and Sawa, A. (2005). p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron 47:29–41.

    Article  PubMed  CAS  Google Scholar 

  • Bae, B. I., Hara, M. R., Cascio, M. B., Wellington, C. L., Hayden, M. R., Ross, C. A., Ha, H. C., Li, X. J., Snyder, S. H., and Sawa, A. (2006). Mutant Huntingtin: Nuclear translocation and cytotoxicity mediated by GAPDH. Proc. Natl. Acad. Sci. U.S.A. 103:3405–3409.

    Google Scholar 

  • Birkmayer, W., Knoll, J., Riederer, P., Youdim, M. B., Hars, V., and Marton, J. (1985). Increased life expectancy resulting from addition of l-deprenyl to Madopar treatment in Parkinson's disease: A longterm study. J. Neural. Transm. 64:113–127.

    Article  PubMed  CAS  Google Scholar 

  • Boehning, D., Patterson, R. L., Sedaghat, L., Glebova, N. O., Kurosaki, T., and Snyder, S. H. (2003). Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat. Cell. Biol. 5:1051–1061.

    Article  PubMed  CAS  Google Scholar 

  • Brown, V. M., Krynetski, E. Y., Krynetskaia, N. F., Grieger, D., Mukatira, S. T., Murti, K. G., Slaughter, C. A., Park, H. W., and Evans, W. E. (2004). A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress. J. Biol. Chem. 279:5984–5992.

    Article  PubMed  CAS  Google Scholar 

  • Brune, B., and Lapetina, E. G. (1989). Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. J. Biol. Chem. 264:8455–8458.

    PubMed  CAS  Google Scholar 

  • Burke, J. R., Enghild, J. J., Martin, M. E., Jou, Y. S., Myers, R. M., Roses, A. D., Vance, J. M., and Strittmatter, W. J. (1996). Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat. Med. 2:347–350.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., Ona, V. O., Li, M., Ferrante, R. J., Fink, K. B., Zhu, S., Bian, J., Guo, L., Farrell, L. A., Hersch, S. M., Hobbs, W., Vonsattel, J. P., Cha, J. H., and Friedlander, R. M. (2000). Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6:797–801.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R., and Snyder, S. H. (1993). Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13:2651–2661.

    PubMed  CAS  Google Scholar 

  • Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H. (1991). Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. U.S.A. 88:6368–6371.

    Article  PubMed  CAS  Google Scholar 

  • Della, N. G., Senior, P. V., and Bowtell, D. D. (1993). Isolation and characterisation of murine homologues of the Drosophila seven in absentia gene (sina). Development 117:1333–1343.

    PubMed  CAS  Google Scholar 

  • Fiucci, G., Beaucourt, S., Duflaut, D., Lespagnol, A., Stumptner-Cuvelette, P., Geant, A., Buchwalter, G., Tuynder, M., Susini, L., Lassalle, J. M., Wasylyk, C., Wasylyk, B., Oren, M., Amson, R., and Telerman, A. (2004). Siah-1b is a direct transcriptional target of p53: Identification of the functional p53 responsive element in the siah-1b promoter. Proc. Natl. Acad. Sci. U.S.A. 101:3510–3515.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, T., Zapata, J. M., Singha, N. C., Thomas, M., Kress, C. L., Krajewska, M., Krajewski, S., Ronai, Z., Reed, J. C., and Matsuzawa, S. (2006). Critical function for SIP, a ubiquitin E3 ligase component of the beta-catenin degradation pathway, for thymocyte development and G1 checkpoint. Immunity 24:29–39.

    Article  PubMed  CAS  Google Scholar 

  • Graven, K. K., Troxler, R. F., Kornfeld, H., Panchenko, M. V., and Farber, H. W. (1994). Regulation of endothelial cell glyceraldehyde-3-phosphate dehydrogenase expression by hypoxia. J. Biol. Chem. 269:24446–24453.

    PubMed  CAS  Google Scholar 

  • Hantraye, P., Brouillet, E., Ferrante, R., Palfi, S., Dolan, R., Matthews, R. T., and Beal, M. F. (1996). Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat. Med. 2:1017–1021.

    Article  PubMed  CAS  Google Scholar 

  • Hara, M. R., Agrawal, N., Kim, S. F., Cascio, M. B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J. H., Tankou, S. K., Hester, L. D., Ferris, C. D., Hayward, S. D., Snyder, S. H., and Sawa, A. (2005). S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell. Biol. 7:665–674.

    Article  PubMed  CAS  Google Scholar 

  • Hara, M. R., Thomas, B., Cascio, M. B., Bae, B. I., Hester, L. D., Dawson, V. L., Dawson, T. M., Sawa, A., and Snyder, S. H. (2006). Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc. Natl. Acad. Sci. U.S.A. 103:3887–3889.

    Google Scholar 

  • Hu, G., and Fearon, E. R. (1999). Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Mol. Cell. Biol. 19:724–732.

    PubMed  CAS  Google Scholar 

  • Ignarro, L. J. (1990). Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: A unique transduction mechanism for transcellular signaling. Pharmacol. Toxicol. 67:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Ishitani, R., and Chuang, D. M. (1996). Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. Proc. Natl. Acad. Sci. U.S.A. 93:9937–9941.

    Article  PubMed  CAS  Google Scholar 

  • Ishitani, R., Kimura, M., Sunaga, K., Katsube, N., Tanaka, M., and Chuang, D. M. (1996a). An antisense oligodeoxynucleotide to glyceraldehyde-3-phosphate dehydrogenase blocks age-induced apoptosis of mature cerebrocortical neurons in culture. J. Pharmacol. Exp. Ther. 278:447–454.

    PubMed  CAS  Google Scholar 

  • Ishitani, R., Sunaga, K., Hirano, A., Saunders, P., Katsube, N., and Chuang, D. M. (1996b). Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J. Neurochem. 66:928–935.

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P., and Snyder, S. H. (2001). Protein S-nitrosylation: A physiological signal for neuronal nitric oxide. Nat. Cell. Biol. 3:193–197.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P. (2004). Preclinical evidence for neuroprotection with monoamine oxidase-B inhibitors in Parkinson's disease. Neurology 63:S13– S22.

    Article  PubMed  Google Scholar 

  • Koshy, B., Matilla, T., Burright, E. N., Merry, D. E., Fischbeck, K. H., Orr, H. T., and Zoghbi, H. Y. (1996). Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. Hum. Mol. Genet. 5:1311–1318.

    Article  PubMed  CAS  Google Scholar 

  • Kragten, E., Lalande, I., Zimmermann, K., Roggo, S., Schindler, P., Muller, D., van Oostrum, J., Waldmeier, P., and Furst, P. (1998). Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(−)-deprenyl. J. Biol. Chem. 273:5821–5828.

    Article  PubMed  CAS  Google Scholar 

  • Kudo, N., Matsumori, N., Taoka, H., Fujiwara, D., Schreiner, E. P., Wolff, B., Yoshida, M., and Horinouchi, S. (1999). Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. U.S.A. 96:9112–9117.

    Article  PubMed  CAS  Google Scholar 

  • Liani, E., Eyal, A., Avraham, E., Shemer, R., Szargel, R., Berg, D., Bornemann, A., Riess, O., Ross, C. A., Rott, R., and Engelender, S. (2004). Ubiquitylation of synphilin-1 and alpha-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson's disease. Proc. Natl. Acad. Sci. U.S.A. 101:5500–5505.

    Article  PubMed  CAS  Google Scholar 

  • Liberatore, G. T., Jackson-Lewis, V., Vukosavic, S., Mandir, A. S., Vila, M., McAuliffe, W. G., Dawson, V. L., Dawson, T. M., and Przedborski, S. (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med. 5:1403–1409.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa, S. I., and Reed, J. C. (2001). Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol. Cell. 7:915–926.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, L. J., and Moss, J. (1993). Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 90:6238–6241.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Siegler, K., Mauro, D. J., Seal, G., Wurzer, J., deRiel, J. K., and Sirover, M. A. (1991). A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 88:8460–8464.

    Article  PubMed  CAS  Google Scholar 

  • Mohr, S., Stamler, J. S., and Brune, B. (1996). Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. J. Biol. Chem. 271:4209–4214.

    Article  PubMed  CAS  Google Scholar 

  • Morgenegg, G., Winkler, G. C., Hubscher, U., Heizmann, C. W., Mous, J., and Kuenzle, C. C. (1986). Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons. J. Neurochem. 47:54–62.

    Article  PubMed  CAS  Google Scholar 

  • Moriyoshi, K., Iijima, K., Fujii, H., Ito, H., Cho, Y., and Nakanishi, S. (2004). Seven in absentia homolog 1A mediates ubiquitination and degradation of group 1 metabotropic glutamate receptors. Proc. Natl. Acad. Sci. U.S.A. 101:8614–8619.

    Article  PubMed  CAS  Google Scholar 

  • Nagano, Y., Yamashita, H., Takahashi, T., Kishida, S., Nakamura, T., Iseki, E., Hattori, N., Mizuno, Y., Kikuchi, A., and Matsumoto, M. (2003). Siah-1 facilitates ubiquitination and degradation of synphilin-1. J. Biol. Chem. 278:51504–51514.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, E., Luo, H. R., Saiardi, A., Bae, B, I., Suzuki, N., and Snyder, S. H. (2005). Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death. J. Biol. Chem. 280:1634–1640.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, R. L., van Rossum, D. B., Kaplin, A. I., Barrow, R. K., and Snyder, S. H. (2005). Inositol 1,4,5-trisphosphate receptor/GAPDH complex augments Ca2+ release via locally derived NADH. Proc. Natl. Acad. Sci. U.S.A. 102:1357–1359.

    Article  PubMed  CAS  Google Scholar 

  • Przedborski, S., Jackson-Lewis, V., Yokoyama, R., Shibata, T., Dawson, V. L., and Dawson, T. M. (1996). Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. U.S.A. 93:4565–4571.

    Article  PubMed  CAS  Google Scholar 

  • Sawa, A., Khan, A. A., Hester, L. D., and Snyder, S. H. (1997). Glyceraldehyde-3-phosphate dehydrogenase: Nuclear translocation participates in neuronal and nonneuronal cell death. Proc. Natl. Acad. Sci. U.S.A. 94:11669–11674.

    Article  PubMed  CAS  Google Scholar 

  • Sawa, A., Wiegand, G. W., Cooper, J., Margolis, R. L., Sharp, A. H., Lawler, J. F.Jr., Greenamyre, J. T., Snyder, S. H., and Ross, C. A. (1999). Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat. Med. 5:1194–1198.

    Article  PubMed  CAS  Google Scholar 

  • Senatorov, V. V., Charles, V., Reddy, P. H., Tagle, D. A., and Chuang, D. M. (2003). Overexpression and nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase in a transgenic mouse model of Huntington's disease. Mol. Cell. Neurosci. 22:285–297.

    Article  PubMed  CAS  Google Scholar 

  • Sharpless, N. E., and DePinho, R. A. (2002). p53: Good cop/bad cop. Cell 110:9–12.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R., and Green, M. R. (1993). Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259:365–368.

    Article  PubMed  CAS  Google Scholar 

  • Sourisseau, T., Desbois, C., Debure, L., Bowtell, D. D., Cato, A. C., Schneikert, J., Moyse, E., and Michel, D. (2001). Alteration of the stability of Bag-1 protein in the control of olfactory neuronal apoptosis. J. Cell. Sci. 114:1409–1416.

    PubMed  CAS  Google Scholar 

  • Sundararaj, K. P., Wood, R. E., Ponnusamy, S., Salas, A. M., Szulc, Z., Bielawska, A., Obeid, L. M., Hannun, Y. A., and Ogretmen, B. (2004). Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 279:6152–6162.

    Article  PubMed  CAS  Google Scholar 

  • Tatton, N. A. (2000). Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp. Neurol. 166:29–43.

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga, K., Nakamura. Y., Sakata, K., Fujimori, K., Ohkubo, M., Sawada, K., and Sakiyama, S. (1987). Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase gene in human lung cancers. Cancer Res. 47:5616–5619.

    PubMed  Google Scholar 

  • Vogelstein, B., Lane, D., and Levine, A. J. (2000). Surfing the p53 network. Nature 408:307–310.

    Article  PubMed  CAS  Google Scholar 

  • Waldmeier, P. C., Boulton, A. A., Cools, A. R., Kato, A. C., and Tatton, W. G. (2000). Neurorescuing effects of the GAPDH ligand CGP 3466B. J. Neural. Transm. Suppl. 60:197–214.

    Google Scholar 

  • Yamaji, R., Fujita, K., Takahashi, S., Yoneda, H., Nagao, K., Masuda, W., Naito, M., Tsuruo, T., Miyatake, K., Inui, H., and Nakano, Y. (2003). Hypoxia up-regulates glyceraldehyde-3-phosphate dehydrogenase in mouse brain capillary endothelial cells: involvement of Na+/Ca2+ exchanger. Biochim. Biophys. Acta 1593:269–276.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., and Snyder, S. H. (1992). Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 89:9382–9385.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, L., Roeder, R. G., and Luo, Y. (2003). S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114:255–266.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by USPHS grants DA-00266 and Research Scientist AwardDA00074 (SHS). We thank Dr. Akira Sawa, Dr. Byoung-Il Bae, and Matthew B. Cascio for their helpful comments. We thank Dr. Peter Waldmeier for providing us TCH346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon H. Snyder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, M.R., Snyder, S.H. Nitric Oxide–GAPDH–Siah: A Novel Cell Death Cascade. Cell Mol Neurobiol 26, 525–536 (2006). https://doi.org/10.1007/s10571-006-9011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9011-6

KEY WORDS:

Navigation