Skip to main content
Log in

Increased Caspase-2, Calpain Activations and Decreased Mitochondrial Complex II Activity in Cells Expressing Exogenous Huntingtin Exon 1 Containing CAG Repeat in the Pathogenic Range

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

(1) Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by the expansion of polymorphic CAG repeats beyond 36 at exon 1 of huntingtin gene (htt). To study cellular effects by expressing N-terminal domain of Huntingtin (Htt) in specific cell lines, we expressed exon 1 of htt that codes for 40 glutamines (40Q) and 16Q in Neuro2A and HeLa cells. (2) Aggregates and various apoptotic markers were detected at various time points after transfection. In addition, we checked the alterations of expressions of few apoptotic genes by RT-PCR. (3) Cells expressing exon 1 of htt coding 40Q at a stretch exhibited nuclear and cytoplasmic aggregates, increased caspase-1, caspase-2, caspase-8, caspase-9/6, and calpain activations, release of cytochrome c and AIF from mitochondria in a time-dependent manner. Truncation of Bid was increased, while the activity of mitochondrial complex II was decreased in such cells. These changes were significantly higher in cells expressing N-terminal Htt with 40Q than that obtained in cells expressing N-terminal Htt with 16Q. Expressions of caspase-1, caspase-2, caspase-3, caspase-7, and caspase-8 were increased while expression of Bcl-2 was decreased in cells expressing mutated Htt-exon 1. (4) Results presented in this communication showed that expression of mutated Htt-exon 1 could mimic the cellular phenotypes observed in Huntington’s disease and this cell model can be used for screening the agents that would interfere with the apoptotic pathway and aggregate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Benchoua A, Trioulier Y, Zala D, Gaillard MC, Lefort N, Dufour N, Saudou F, Elalouf JM, Hirsch E, Hantraye P, Deglon N, Brouillet E (2006) Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 17:1652–1663

    Article  PubMed  CAS  Google Scholar 

  • Bizat N, Hermel JM, Humbert S, Jacquard C, Creminon C, Escartin C, Saudou F, Krajewski S, Hantraye P, Brouillet E (2003) In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem 278:43245–43253

    Article  PubMed  CAS  Google Scholar 

  • Brennan WA Jr, Bird ED, Aprille JR (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 44:1948–1950

    Article  PubMed  CAS  Google Scholar 

  • Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653

    Article  PubMed  CAS  Google Scholar 

  • Canals JM, Pineda JR, Torres-Peraza JF, Bosch M, Martin-Ibanez R, Munoz MT, Mengod G, Ernfors P, Alberch J (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 24:7727–7739

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha J, Friedlander RM (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801

    Article  PubMed  CAS  Google Scholar 

  • Conrad CA, Tiina MK, Andreu VV, Raymond AS (2006) Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentration. Proc Natl Acad Sci USA 103:9685–9690

    Article  CAS  Google Scholar 

  • Cowan CM, Raymond LA (2006) Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 75:25–71

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M, Faull RL, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Lin T, Uranishi H, Gu W, Xu Y (2005) Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol Cell Biol 25:5389–5395

    Article  PubMed  CAS  Google Scholar 

  • Gafni J, Ellerby LM (2002) Calpain activation in Huntington’s disease. J Neurosci 22:4842–4849

    PubMed  CAS  Google Scholar 

  • Gervais FG, Singaraja R, Xanthoudakis S, Gutekunst CA, Leavitt BR, Metzler M, Hackam AS, Tam J, Vaillancourt JP, Houtzager V, Rasper DM, Roy S, Hayden MR, Nicholson DW (2002) Recruitment and activation of caspase-8 bythe Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 4:95–105

    Article  PubMed  CAS  Google Scholar 

  • Goffredo D, Rigamonti D, Tartari M, De-Micheli A, Verderio C, Matteoli M, Zuccato C, Cattaneo E (2002) Calcium-dependent cleavage of endogenous wild-type huntingtin in primary cortical neurons. J Biol Chem 277:39594–39598

    Article  PubMed  CAS  Google Scholar 

  • Gomez GT, Hu H, McCaw EA, Denovan-Wright EM (2006) Brain-specific factors in combination with mutant huntingtin induce gene-specific transcriptional dysregulation. Mol Cell Neurosci 31:661–675

    Article  PubMed  CAS  Google Scholar 

  • Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39:385–389

    Article  PubMed  CAS  Google Scholar 

  • Guegan C, Vila M, Teismann P, Chen C, Onteniente B, Li M, Friedlander RM, Przedborski S (2002) Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS. Mol Cell Neurosci 20:553–562

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Radha V, Furukawa Y, Swarup G (2001) Direct transcriptional activation of human caspase1 by tumor suppressor p53, J. Biol Chem 276:10585–105858

    Article  CAS  Google Scholar 

  • Hackam AS, Yassa AS, Singaraja R, Metzler M, Gutekunst C-A, Gan L, Warby S, Wellington CL, Vaillancourt J, Chen N, Gervais FG, Raymond L, Nicholson DW, Hayden MR (2000) Huntingtin interacting protein 1 induces apoptosis via a novel caspase-dependent death effector domain. J Biol Chem 275:41299–41308

    Article  PubMed  CAS  Google Scholar 

  • Hermel E, Gafni J, Propp SS, Leavitt BR, Wellington CL, Young JE, Hackam AS, Logvinova AV, Peel AL, Chen SF, Hook V, Singaraja R, Krajewski S, Goldsmith PC, Ellerby HM, Hayden MR, Bredesen DE, Ellerby LM (2004) Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Differ 11:424–438

    Article  PubMed  CAS  Google Scholar 

  • Ho LW, Brown R, Maxwell M, Wyttenbach A, Rubinsztein DC (2001) Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington’s disease. J Med Genet 38:450–452

    Article  PubMed  CAS  Google Scholar 

  • Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, Jamot L, Li XJ, Stevens ME, Rosemond E, Roder JC, Phillips AG, Rubin EM, Hersch SM, Hayden MR (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neuro degeneration. Neuron 23:181–192

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Lee HS, LaForet G, McIntyre C, Martin EJ, Chang P, Kim. TW, Williams M, Reddy PH, Tagle D, Boyce FM, Won L, Heller A, Aronin N, DiFiglia M (1999) Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J Neurosci 19:964–973

    PubMed  CAS  Google Scholar 

  • Li SH, Lam S, Cheng AL, Li XJ (2000) Intranuclear huntingtin increases the expression of caspase-1 and induces apoptosis. Hum Mol Genet 9:2859–2867

    Article  PubMed  CAS  Google Scholar 

  • Lu CX, Fan TJ, Hu GB, Cong RS (2003) Apoptosis-inducing factor and apoptosis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35:881–885

    CAS  Google Scholar 

  • Majumder P, Chattopadhyay B, Mazumder A, Das P, Bhattacharyya NP (2006) Induction of apoptosis in cells expressing exogenous Hippi, a molecular partner of huntingtin-interacting protein HIP1. Neurobiol Dis 22:242–256

    Article  PubMed  CAS  Google Scholar 

  • Mann VM, Cooper JM, Javoy-Agid F, Agid Y, Jenner P, Schapira AH (1990) Mitochondrial function and parental sex effect in Huntington’s disease. Lancet 336:749

    Article  PubMed  CAS  Google Scholar 

  • Narain Y, Wyttenbach A, Rankin J, Furlong RA, Rubinsztein DC (1999) A molecular investigation of true dominance in Huntington’s disease. J Med Genet 36:739–746

    PubMed  CAS  Google Scholar 

  • Nenguke T, Aladjem MI, Gusella JF, Wexler NS, The Venezuela HD Project, Arnheim N (2003) Candidate DNA replication initiation regions at human trinucleotide repeat disease loci. Hum Mol Genet 12:1021–1028

    Google Scholar 

  • Omi K, Hachiya NS, Tokunaga K, Kaneko K (2005) siRNA-mediated inhibition of endogenous Huntington disease gene expression induces an aberrant configuration of the ER network in vitro. Biochem Biophys Res Commun 338:1229–1235

    Article  PubMed  CAS  Google Scholar 

  • Ona VO, Li M, Vonsattel JP, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li XJ, Stieg PE, Yuan J, Penney JB, Young AB, Cha JH, Friedlander RM (1999) Inhibition of caspase1 slows disease progression in a mouse model of Huntington’s disease. Nature 399:263–267

    Article  PubMed  CAS  Google Scholar 

  • Puranam KL, Wu G, Strittmatter WJ, Burke JR (2006) Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria. Biochem Biophys Res Commun 341:607–613

    Article  PubMed  CAS  Google Scholar 

  • Read SH, Baliga BC, Ekert PG, Vaux DL, Kumar S (2002) A novel Apaf-1-independent putative caspase-2 activation complex. J Cell Biol 159:739–745

    Article  PubMed  CAS  Google Scholar 

  • Rigamonti D, Sipione S, Goffredo D, Zuccato C, Fossale E, Cattaneo E (2001) Huntingtin’s neuroprotective activity occurs via inhibition of procaspase-9 processing. J Biol Chem 276:14545–14548

    Article  PubMed  CAS  Google Scholar 

  • Ruan Q, Lesort M, MacDonald ME, Johnson GV (2004) Striatal cells from mutant huntingtin knock-in mice are selectively vulnerable to mitochondrial complex II inhibitor-induced cell death through a non-apoptotic pathway. Hum Mol Genet 13:669–681

    Article  PubMed  CAS  Google Scholar 

  • Sanchez I, Xu CJ, Juo P, Kakizaka A, Biens J, Yuan J (1999) Caspase 8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22:623–633

    Article  PubMed  CAS  Google Scholar 

  • Tabrizi SJ, Cleeter M, Xuereb J, Taanman JW, Cooper JM, Schapira AH (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Neurol 45:25–32

    CAS  Google Scholar 

  • Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM (1995) Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • Thomas LB, Gates DJ, Richfield EK, O’Brien TF, Schweitzer JB, Steindler DA (1995) DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp Neurol 133:265–272

    Article  PubMed  CAS  Google Scholar 

  • Vaisid T, Kosower NS, Barnoy S (2005) Caspase-1 activity is required for neuronal differentiation of PC12 cells: cross-talk between the caspase and calpain systems. Biochim Biophys Acta 1743:223–230

    Article  PubMed  CAS  Google Scholar 

  • Vis JC, Schipper E, de Boer-van HRT, Verbeek MM, de Waal RM, Wesseling P, ten Donkelaar HJ, Kremer B (2005) Expression pattern of apoptosis-related markers in Huntington’s disease. Acta Neuropathol (Berl) 109:321–328

    Article  CAS  Google Scholar 

  • Wang GH, Mitsui K, Kotliarova S, Yamashita A, Nagao Y, Tokuhiro S, Iwatsubo T, Kanazawa I, Nukina N (1999) Caspase activation during apoptotic cell death induced by expanded polyglutamine in N2a cells. Neuroreport 10:2435–2438

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, Cattaneo E, Ferrante RJ, Kristal BS, Friedlander RM (2003) Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Nat Acad Sci USA 100:10483–10487

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang H, Figueroa BE, Zhang WH, Huo C, Guan Y, Zhang Y, Bruey JM, Reed JC, Friedlander RM (2005) Dysregulation of receptor interacting protein-2 and caspase recruitment domain only protein mediates aberrant caspase-1 activation in Huntington’s disease. J Neurosci 25:11645–11654

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Sugama S, Mischak RP, Kiaei M, Bizat N, Brouillet E, Joh TH, Beal MF (2004) A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiol Dis 17:250–259

    Article  PubMed  CAS  Google Scholar 

  • Zemskov EA, Nukina N (2003) Impaired degradation of PKCalpha by proteasome in a cellular model of Huntington’s disease. Neuroreport 14:1435–1438

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Ona VO, Li M, Drozda M, Dubois-Dauphin M, Przedborski S, Ferrante RJ, Friedlander RM (2003) Sequential activation of individual caspases, and of alterations in Bcl-2 proapoptotic signals in a mouse model of Huntington’s disease. J Neurochem 87:1184–1192

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitai P. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumder, P., Raychaudhuri, S., Chattopadhyay, B. et al. Increased Caspase-2, Calpain Activations and Decreased Mitochondrial Complex II Activity in Cells Expressing Exogenous Huntingtin Exon 1 Containing CAG Repeat in the Pathogenic Range. Cell Mol Neurobiol 27, 1127–1145 (2007). https://doi.org/10.1007/s10571-007-9220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9220-7

Keywords

Navigation