Skip to main content
Log in

The Cerebellum in Feeding Control: Possible Function and Mechanism

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulating anatomical, functional, and behavioral studies reveal that the cerebellum is involved in the regulation of various visceral functions including feeding control. Cerebellar lesions may induce alterations in feeding behavior and decreases in body weight. Although the exact mechanisms underlying the cerebellar regulation of food intake is still unclear, a series of studies have demonstrated that there are neural pathways directly and/or indirectly connecting the cerebellum with several important centers for feeding control, such as the hypothalamus. Electrophysiological data suggest that via the direct cerebellohypothalamic projections, the cerebellar outputs may reach, converge, and be integrated with some critical feeding signals including gastric vagal afferents, CCK, leptin, and glycemia on single hypothalamic neurons. Furthermore, recent functional imaging studies provide substantial evidences that hunger, satiation, and thirst are accompanied with a cerebellar activation. Here we describe that the cerebellum may be much more than a movement coordinator and actively participate in feeding control, i.e., it may act as an essential node linking somatic and visceral systems and help to generate an integrated and coordinated somatic-visceral response in feeding behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aas JE, Brodal P (1989) Demonstration of a mamillo-ponto-cerebellar pathway. Eur J Neurosci 1:61–74

    Article  PubMed  Google Scholar 

  • Aou S, Takaki A, Karadi Z, Hori T, Nishino H, Oomura Y (1991) Functional heterogeneity of the monkey lateral hypothalamus in the control of feeding. Brain Res Bull 27:451–455

    Article  CAS  PubMed  Google Scholar 

  • Azizi SA, Mihailoff GA, Burne RA, Woodward DJ (1981) The pontocerebellar system in the rat: an HRP study. I. Posterior vermis. J Comp Neurol 197:543–548

    Article  CAS  PubMed  Google Scholar 

  • Ban T, Inoue K, Ozaki S, Kurotsu T (1956) Interrelation between anterior lobe of cerebellum and hypothalamus in rabbit. Med J Osaka Univ 7:101–115

    Google Scholar 

  • Bard P, Woolsey CN, Snider RS, Mountcastle VB, Bromiley RB (1947) Delimitation of central nervous mechanisms involved in motion sickness. Fed Proc 6:72

    CAS  PubMed  Google Scholar 

  • Beller NN, Talan MI (1971) Significance of the cerebellar nuclei for vegetative responses to the stimulation of the efferent visceral areas of the cat cerebellar cortex. Sechenov Physiol J USSR LVII:28–37

    Google Scholar 

  • Bernard C (1858) Leçon sur la physiologie et la pathologie du system nerveux, vol 1. JB Baillière et Fils, Paris

    Google Scholar 

  • Brodal P, Walberg F (1977) The pontine projection to the cerebellar anterior lobe: an experimental study in the cat with retrograde transport of horseradish peroxidase. Exp Brain Res 29:233–248

    Article  CAS  PubMed  Google Scholar 

  • Campfield LA, Smith FJ (2003) Blood glucose dynamics and control of meal initiation: a pattern detection and recognition theory. Physiol Rev 83:25–58

    CAS  PubMed  Google Scholar 

  • Çavdar S, Şan T, Aker R, Şehirli U, Onat F (2001a) Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat 198:37–45

    Article  PubMed  Google Scholar 

  • Çavdar S, Onat F, Aker R, Şehirli U, Şan T, Yananli HR (2001b) The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat 198:463–472

    Article  PubMed  Google Scholar 

  • Cerf-Ducastel B, Murphy C (2001) fMRI activation in response to odorants orally delivered in aqueous solutions. Chem Senses 26:625–637

    Article  CAS  PubMed  Google Scholar 

  • Colombel C, Lalonde R, Caston J (2002) The effects of unilateral removal of the cerebellar hemispheres on motor functions and weight gain in rats. Brain Res 950:231–238

    Article  CAS  PubMed  Google Scholar 

  • Dietrichs E (1984) Cerebellar autonomic function: direct hypothalamocerebellar pathway. Science 223:591–593

    Article  CAS  PubMed  Google Scholar 

  • Dietrichs E, Haines DE (1984) Demonstration of hypothalamocerebellar and cerebellohypothalamic fibers in a prosimian primate (Galago crassicaudatus). Anat Embryol 170:313–318

    Article  CAS  PubMed  Google Scholar 

  • Dietrichs E, Haines DE (1985) Do hypothalamo-cerebellar fibres terminate in all layers of the cerebellar cortex? Anat Embryol 173:279–284

    Article  CAS  PubMed  Google Scholar 

  • Dietrichs E, Haines DE (1986) Do the same hypothalamic neurons project to both amygdala and cerebellum? Brain Res 364:241–248

    Article  CAS  PubMed  Google Scholar 

  • Dietrichs E, Haines DE (2002) Possible pathway for cerebellar modulation of autonomic responses: micturition. Scand J Urol Nephrol 210(Suppl):16–20

    Article  Google Scholar 

  • Dietrichs E, Haines DE, Qvist H (1985) Indirect hypothalamocerebellar pathway? Demonstration of hypothalamic efferent to the lateral reticular nucleus. Exp Brain Res 60:483–491

    Article  CAS  PubMed  Google Scholar 

  • Dietrichs E, Wiklund L, Haines DE (1992) The hypothalamocerebellar projection in the rat: origin and transmitter. Arch Ital Biol 130:203–211

    CAS  PubMed  Google Scholar 

  • Dietrichs E, Haines DE, Røste GK, Røste LS (1994) Hypothalamocerebellar and cerebellohypothalamic projections: circuits for regulating nonsomatic cerebellar activity? Histol Histopathol 9:603–614

    CAS  PubMed  Google Scholar 

  • Fink H, Rex A, Voits M, Voigt JP (1998) Major biological actions of CCK: a critical evaluation of research findings. Exp Brain Res 123:77–83

    Article  CAS  PubMed  Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  CAS  PubMed  Google Scholar 

  • Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272:545–547

    Article  CAS  PubMed  Google Scholar 

  • Gautier JF, Chen K, Uecker A, Bandy D, Frost J, Salbe AD, Pratley RE, Lawson M, Ravussin E, Reiman EM, Tataranni PA (1999) Regions of the human brain affected during a liquid-meal taste perception in the fasting state: a positron emission tomography study. Am J Clin Nutr 70:806–810

    CAS  PubMed  Google Scholar 

  • Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M, Ravussin E, Reiman EM, Tataranni PA (2000) Differential brain responses to satiation in obese and lean men. Diabetes 49:838–846

    Article  CAS  PubMed  Google Scholar 

  • Gautier JF, Del Parigi A, Chen K, Salbe AD, Bandy D, Pratley RE, Ravussin E, Reiman EM, Tataranni PA (2001) Effect of satiation on brain activity in obese and lean women. Obes Res 9:676–684

    Article  CAS  PubMed  Google Scholar 

  • Gzgzian DM, Kuzina MM, Tanasiĭchuk OF (1978) Effect of the cerebellum on the motor activity of the stomach in the scorpion fish, Scorpaena porcus. Zh Evol Biokhim Fiziol 14:408–410

    CAS  PubMed  Google Scholar 

  • Haines DE, Dietrichs E (1984) An HRP study of hypothalamocerebellar and cerebellohypothalamic connections in squirrel monkey (Saimiri sciureus). J Comp Neurol 229:559–575

    Article  CAS  PubMed  Google Scholar 

  • Haines DE, Dietrichs E (1989) Nonsomatic cerebellar circuits: a broader view of cerebellar involvements in locomotion. J Motor Behav 21:518–525

    CAS  Google Scholar 

  • Haines DE, Dietrichs E (1991) Evidence of an x zone in lobule V of the squirrel monkey cerebellum: the distribution of corticonuclear fibers. Anat Embryol 184:255–268

    Article  CAS  PubMed  Google Scholar 

  • Haines DE, Dietrichs E, Sowa TE (1984) Hypothalamo-cerebellar and cerebello-hypothalamic pathways: a review and hypothesis concerning cerebellar circuits which may influence autonomic centers affective behavior. Brain Behav Evol 24:198–220

    Article  CAS  PubMed  Google Scholar 

  • Haines DE, Sowa TE, Dietrichs E (1985) Connections between the cerebellum and hypothalamus in tree shrew (Tupain glis). Brain Res 328:367–373

    Article  CAS  PubMed  Google Scholar 

  • Haines DE, Dietrichs E, Culberson JL, Sowa TE (1986) The organization of hypothalamocerebellar cortical fibers in the squirrel monkey (Saimiri sciureus). J Comp Neurol 250:377–388

    Article  CAS  PubMed  Google Scholar 

  • Haines DE, May PJ, Dietrichs E (1990) Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol 299:106–122

    Article  CAS  PubMed  Google Scholar 

  • Haines DE, Dietrichs E, Mihailoff GA, McDonald EF (1997) The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol 41:83–107

    Article  CAS  PubMed  Google Scholar 

  • Himmi T, Boyer A, Orsini JC (1988) Changes in lateral hypothalamic neuronal activity accompanying hyper- and hypoglycemias. Physiol Behav 44:347–354

    Article  CAS  PubMed  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    CAS  PubMed  Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  • Karadi Z, Oomura Y, Nishino H, Scott TR, Lenard L, Aou S (1990) Complex attribute of lateral hypothalamic neurons in the regulation of feeding of alert rhesus monkeys. Brain Res Bull 25:933–939

    Article  CAS  PubMed  Google Scholar 

  • Katafuchi T, Koizumi K (1990) Fastigial inputs to paraventricular neurosecretory neurones studied by extra- and intracellular recordings in rats. J Physiol (Lond) 421:535–551

    CAS  Google Scholar 

  • Killgore WD, Young AD, Femia LA, Bogorodzki P, Rogowska J, Yurgelun-Todd DA (2003) Cortical and limbic activation during viewing of high- versus low-calorie foods. Neuroimage 19:1381–1394

    Article  PubMed  Google Scholar 

  • Liu H, Mihailoff GA (1999) Hypothalamopontine projections in the rat: anterograde axonal transport studies utilizing light and electron microscopy. Anat Rec 255:428–451

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Gao JH, Liu HL, Fox PT (2000) The temporal response of the brain after eating revealed by functional MRI. Nature 405:1058–1061

    Article  CAS  PubMed  Google Scholar 

  • Mahler JM (1993) An unexpected role of the cerebellum: involvement in nutritional organization. Physiol Behav 54:1063–1067

    Article  CAS  PubMed  Google Scholar 

  • Manchanda SK, Tandon OP, Aneja IS (1972) Role of the cerebellum in the control of gastro-intestinal motility. J Neural Transm 33:195–209

    Article  CAS  PubMed  Google Scholar 

  • Martin JH, Cooper SE, Hacking A, Ghez C (2000) Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control. J Neurophysiol 83:1886–1899

    CAS  PubMed  Google Scholar 

  • Martner J (1975) Cerebellar influences on autonomic mechanisms. An experimental study in the cat with special reference to the fastigial nucleus. Acta Physiol Scand 425(Suppl):1–42

    CAS  Google Scholar 

  • Mihailoff GA (1993) Cerebellar nuclear projections from the basilar pontine nuclei and nucleus reticularis tegmenti pontis as demonstrated with PHA-L tracing in the rat. J Comp Neurol 330:130–146

    Article  CAS  PubMed  Google Scholar 

  • Min B, Oomura Y, Katafuchi T (1989) Responses of rat lateral hypothalamic neuronal activity to fastigial nucleus stimulation. J Neurophysiol 61:1178–1184

    CAS  PubMed  Google Scholar 

  • Milak MS, Shimansky Y, Bracha V, Bloedel JR (1997) Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol 78:939–959

    CAS  PubMed  Google Scholar 

  • Noble F, Wank SA, Crawley JN, Bradwejn J, Seroogy KB, Hamon M, Roques BP (1999) Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev 51:745–781

    CAS  PubMed  Google Scholar 

  • Oomura Y, Ono T, Ooyama H, Wayner MJ (1969) Glucose and osmosensitive neurones of the rat hypothalamus. Nature 222:282–284

    Article  CAS  PubMed  Google Scholar 

  • Orsini JC, Wiser AK, Himmi T, Boyer A (1991) Sensitivity of lateral hypothalamic neurons to glycemia level: possible involvement of an indirect adrenergic mechanism. Brain Res Bull 26:472–478

    Article  Google Scholar 

  • Parada MA, Hernandez L, Puig de Parada M, Paez X, Hoebel BG (1990) Dopamine in the lateral hypothalamus may be involved in the inhibition of locomotion related to food and water seeding. Brain Res Bull 25:961–968

    Article  CAS  PubMed  Google Scholar 

  • Parsons LM, Denton D, Enga G, McKinley M, Shade R, Lancaster J, Fox PT (2000) Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc Natl Acad Sci USA 97:2332–2334

    Article  CAS  PubMed  Google Scholar 

  • Parsons LM, Enga G, Liotti M, Brannan S, Denton D, Shade R, Robillard R, Madden L, Abplanalp B, Fox PT (2001) Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. Proc Natl Acad Sci USA 98:2041–2046

    Article  CAS  PubMed  Google Scholar 

  • Peng YP, Qiu YH, Chao BB, Wang JJ (2005) Effect of lesions of cerebellar fastigial nuclei on lymphocyte functions of rats. Neurosci Res 51:275–284

    Article  CAS  PubMed  Google Scholar 

  • Peng YP, Qiu YH, Qiu J, Wang JJ (2006) Cerebellar interposed nucleus lesions suppress lymphocyte function in rats. Brain Res Bull 71:10–17

    Article  CAS  PubMed  Google Scholar 

  • Pu YM, Wang JJ, Wang T, Yu QX (1995) Cerebellar interpositus nucleus modulates neuronal activity of lateral hypothalamic area. Neuroreport 6:985–988

    Article  CAS  PubMed  Google Scholar 

  • Reiman EM, Lane RD, Ahern GL, Schwartz GE, Davidson RJ, Friston KJ, Yun LS, Chen K (1997) Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry 154:918–925

    CAS  PubMed  Google Scholar 

  • Reis DJ, Golanov EV (1997) Autonomic and vasomotor regulation. Int Rev Neurobiol 41:121–149

    Article  CAS  PubMed  Google Scholar 

  • Scalera G (1991) Effects of corticocerebellar lesions on taste preferences, body weight gain, food and fluid intake in the rat. J Physiol (Paris) 85:214–222

    CAS  Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, Kabani N, Toga A, Evans A, Petrides M (1999) Three-dimensional MRI atlas of the cerebellum in proportional stereotaxic space. Neuroimage 10:233–260

    Article  CAS  PubMed  Google Scholar 

  • Schwartz GJ (2000) The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16:866–873

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    CAS  PubMed  Google Scholar 

  • Shparkovskiĭ IA, Vataev SI (1985) Effect of electrostimulation of different brain structures on the motor activity of the digestive tract of the cod. Fiziol Zh SSSR Im I M Sechenova 71:1265–1270

    PubMed  Google Scholar 

  • Sobel N, Prabhakaran V, Hartley CA, Desmond JE, Zhao Z, Glover GH, Gabrieli JD, Sullivan EV (1998) Odorant-induced and sniff-induced activation in the cerebellum of the human. J Neurosci 18:8990–9001

    CAS  PubMed  Google Scholar 

  • Somana R, Walberg F (1979) Cerebellar afferents from the nucleus of the solitary tract. Neurosci Lett 11:41–47

    Article  CAS  PubMed  Google Scholar 

  • Supple WF (1993) Hypothalamic modulation of Purkinje cell activity in the anterior cerebellar vermis. Neuroreport 4:979–982

    Article  PubMed  Google Scholar 

  • Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, Pratley RE, Lawson M, Reiman EM, Ravussin E (1999) Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci USA 96:4569–4574

    Article  CAS  PubMed  Google Scholar 

  • Teves D, Videen TO, Cryer PE, Powers WJ (2004) Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia. Proc Natl Acad Sci USA 101:6217–6221

    Article  CAS  PubMed  Google Scholar 

  • Voronin LG (1938) New data on the motor activity of intestinal tract and on its regulatory mechanism. Izv naucn Inst Lesgafta 21:3–74

    Google Scholar 

  • Voronin LG, Simkina AM (1938) The influence of electrical stimulation of the cerebellum on the motor function of the intestinal tract. Izv naucn Inst Lesgafta 21:75–85

    Google Scholar 

  • Wang T, Yu QX, Wang JJ (1994) Effects of stimulating lateral hypothalamic area and ventromedial nucleus of hypothalamus on cerebellar cortical neuronal activity in the cat. Chin J Physiol Sci 10:17–25

    CAS  Google Scholar 

  • Wang JJ, Pu YM, Wang T (1997) Influences of cerebellar interpositus nucleus and fastigial nucleus on the neuronal activity of lateral hypothalamic area. Sci China (Series C) 40:176–183

    Article  CAS  Google Scholar 

  • Wen YQ, Zhu JN, Zhang YP, Wang JJ (2004) Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neurosci Lett 370:25–29

    Article  CAS  PubMed  Google Scholar 

  • Wolfe JW (1969) Chronic gastric ulceration associated with experimentally induced posterior cerebellar vermal lesions. Physiol Behav 4:1011–1013

    Article  Google Scholar 

  • Xu FD, Frazier DT (2000) Modulation of respiratory motor output by cerebellar deep nuclei in the rat. J Appl Physiol 89:996–1004

    CAS  PubMed  Google Scholar 

  • Yuan CS, Barber WD (1992) Hypothalamic unitary responses to gastric vagal input from the proximal stomach. Am J Physiol 262:G74–G80

    CAS  PubMed  Google Scholar 

  • Yuan CS, Barber WD (1996) Interactions of gastric vagal and peripheral nerves on single neurons of lateral hypothalamus in the cat. Am J Physiol 271:G858–G865

    CAS  PubMed  Google Scholar 

  • Yung WH, Chan YS, Chow BK, Wang JJ (2006) The role of secretin in the cerebellum. Cerebellum 5:43–48

    Article  CAS  PubMed  Google Scholar 

  • Zanchetti A, Zoccolini A (1954) Autonomic hypothalamic outbursts elicited by cerebellar stimulation. J Neurophysiol 17:475–483

    CAS  PubMed  Google Scholar 

  • Zhang YP, Ma C, Wen YQ, Wang JJ (2003) Convergence of gastric vagal and cerebellar fastigial nuclear inputs on glycemia-sensitive neurons of lateral hypothalamic area in the rat. Neurosci Res 45:9–16

    Article  PubMed  Google Scholar 

  • Zhang YP, Zhu JN, Chen K, Li HZ, Wang JJ (2005) Neurons in the rat lateral hypothalamic area integrate information from the gastric vagal nerves and the cerebellar interpositus nucleus. Neurosignals 14:234–243

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Dietrichs E, Walberg F (1982) Cerebellar afferent fibres from the dorsal motor vagal nucleus in the cat. Neurosci Lett 32:113–118

    Article  CAS  PubMed  Google Scholar 

  • Zhu JN, Zhang YP, Song YN, Wang JJ (2004) Cerebellar interpositus nuclear and gastric vagal afferent inputs could reach and converge onto glycemia-sensitive neurons of the ventromedial hypothalamic nucleus in rats. Neurosci Res 48:405–417

    Article  PubMed  Google Scholar 

  • Zhu JN, Li HZ, Ding Y, Wang JJ (2006a) Cerebellar modulation of feeding-related neurons in rat dorsomedial hypothalamic nucleus. J Neurosci Res 84:1597–1609

    Article  CAS  PubMed  Google Scholar 

  • Zhu JN, Yung WH, Chow BKC, Chan YS, Wang JJ (2006b) The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52:93–106

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Researches from our laboratory were supported by grants 39770249, 30070250, 30370462, 30670671, 30700201 and the NSFC/RGC Joint Research Scheme 30318004 from the National Natural Science Foundation of China, RFDP grant 20010284021, 20050284025 from the State Educational Ministry of China and grants BK97045, BK2002083, BK2006713 from the Natural Science Foundation of Jiangsu Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, JN., Wang, JJ. The Cerebellum in Feeding Control: Possible Function and Mechanism. Cell Mol Neurobiol 28, 469–478 (2008). https://doi.org/10.1007/s10571-007-9236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9236-z

Keywords

Navigation