Skip to main content

Advertisement

Log in

Tissue Plasminogen Activator Enhances the Hypoxia/reoxygenation-induced Impairment of the Blood–brain Barrier in a Primary Culture of Rat Brain Endothelial Cells

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hemorrhagic transformation is a major complication associated with tissue plasminogen activator (tPA) therapy for ischemic stroke. We studied the effect of tPA on the blood–brain barrier (BBB) function with our in vitro monolayer model generated using rat brain microvascular endothelial cells subjected either to normoxia or to hypoxia/reoxygenation (H/R) with or without the administration of tPA. The barrier function was evaluated by the transendothelial electrical resistance (TEER), the permeability of sodium fluorescein and Evans’ blue-albumin (EBA), and the uptake of lucifer yellow (LY). The permeability of sodium fluorescein and EBA was used as an index of paracellular and transcellular transport, respectively. The administration of tPA increased the permeability of EBA and the uptake of LY under normoxia. It enhanced the increase in the permeability of both sodium fluorescein and EBA, the decrease in the TEER, and the disruption in the expression of ZO-1 under H/R conditions. Administration of tPA could cause an increase in the transcellular transport under normoxia, and both the transcellular and paracellular transport of the BBB under H/R conditions in vitro. Even in humans, tPA may lead to an opening of the BBB under non-ischemic conditions and have an additional effect on the ischemia-induced BBB disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benchenane K, Berezowski V, Fernandez-Monreal M, Brillault J, Valable S, Dehouck MP et al (2005) Oxygen glucose deprivation switches the transport of tPA across the blood-brain barrier from an LRP-dependent to an increased LRP-independent process. Stroke 36:1065–1070. doi:10.1161/01.STR.0000163050.39122.4f

    Article  PubMed  Google Scholar 

  • Cheng T, Petraglia AL, Li Z, Thiyagarajan M, Zhong Z, Wu Z et al (2006) Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med 12:1278–1285. doi:10.1038/nm1498

    Article  PubMed  CAS  Google Scholar 

  • Deli MA, Szabó CA, Dung NTK, Joó F (1997) Immunohistochemical and electron microscopy detections on primary cultures of rat cerebral endothelial cells. In: Boer AG, Sutanto W (eds) Drug transport across the blood–brain barrier: in vivo and in vitro techniques. Harwood Academic Publishers, Amsterdam, pp 23–28

    Google Scholar 

  • Deli MA, Ábrahám CS, Takahata H, Niwa M (2001) Tissue plasminogen activator inhibits P-glycoprotein activity in brain endothelial cells. Eur J Pharmacol 411:R3–R5. doi:10.1016/S0014-2999(00)00895-5

    Article  PubMed  CAS  Google Scholar 

  • Dohgu S, Nishioku T, Sumi N, Takata F, Nakagawa S, Naito M et al (2007) Adverse effect of cyclosporin A on barrier functions of cerebral microvascular endothelial cells after hypoxia-reoxygenation damage in vitro. Cell Mol Neurobiol 27:889–899. doi:10.1007/s10571-007-9209-2

    Article  PubMed  CAS  Google Scholar 

  • Fischer S, Wiesnet M, Marti HH, Renz D, Schaper W (2004) Simultaneous activation of several second messengers in hypoxia-induced hyperpermeability of brain derived endothelial cells. J Cell Physiol 198:359–369. doi:10.1002/jcp. 10417

    Article  PubMed  CAS  Google Scholar 

  • Godfrey KR, Tanswell P, Bates RA, Chappell MJ, Madden FN (1998) Nonlinear pharmacokinetics of tissue-type plasminogen activator in three animal species: a comparison of mathematical models. Biopharm Drug Dispos 19:131–140. doi:10.1002/(SICI)1099-081X(199803)19:2<131::AID-BDD87>3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, Niwa M (2004) Effects of hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier. Regul Pept 123:77–83. doi:10.1016/j.regpep.2004.05.023

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T et al (1998) Hydrocortisone reinforces the blood–brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 244:312–316. doi:10.1006/bbrc.1997.8051

    Article  PubMed  CAS  Google Scholar 

  • Honda M, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Nagata I et al (2006) Adrenomedullin improves the blood–brain barrier function through the expression of claudin-5. Cell Mol Neurobiol 26:109–118. doi:10.1007/s10571-006-9028-x

    Article  PubMed  CAS  Google Scholar 

  • Kis B, Deli MA, Kobayashi H, Abraham CS, Yanagita T, Kaiya H et al (2001) Adrenomedullin regulates blood–brain barrier functions in vitro. NeuroReport 12:4139–4142. doi:10.1097/00001756-200112210-00055

    Article  PubMed  CAS  Google Scholar 

  • Koto T, Takubo K, Ishida S, Shinoda H, Inoue M, Tsubota K et al (2007) Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol 170:1389–1397. doi:10.2353/ajpath.2007.060693

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Cheng T, Guo H, Fernandez JA, Griffin JH, Song X et al (2004) Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C. Nat Med 10:1379–1383. doi:10.1038/nm1122

    Article  PubMed  CAS  Google Scholar 

  • Mark KS, Davis TP (2002) Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol 282:H1485–H1494

    PubMed  CAS  Google Scholar 

  • Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R et al (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27:687–694. doi:10.1007/s10571-007-9195-4

    Article  PubMed  CAS  Google Scholar 

  • NINDS (1995) Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 333:1581–1587. doi:10.1056/NEJM199512143332401

    Article  Google Scholar 

  • NINDS (1997) Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. The NINDS t-PA Stroke Study Group. Stroke 28:2109–2118

    Google Scholar 

  • Nishioku T, Takata F, Yamauchi A, Sumi N, Yamamoto I, Fujino A et al (2007) Protective action of indapamide, a thiazide-like diuretic, on ischemia-induced injury and barrier dysfunction in mouse brain microvascular endothelial cells. J Pharmacol Sci 103:323–327. doi:10.1254/jphs.SC0060222

    Article  PubMed  CAS  Google Scholar 

  • Niwa K, Kado T, Sakai J, Karino T (2004) The effects of a shear flow on the uptake of LDL and acetylated LDL by an EC monoculture and an EC-SMC coculture. Ann Biomed Eng 32:537–543. doi:10.1023/B:ABME.0000019173.79939.54

    Article  PubMed  Google Scholar 

  • Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP et al (2005) Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem 93:279–289. doi:10.1111/j.1471-4159.2004.03020.x

    Article  PubMed  CAS  Google Scholar 

  • Utepbergenov DI, Mertsch K, Sporbert A, Tenz K, Paul M, Haseloff RF et al (1998) Nitric oxide protects blood-brain barrier in vitro from hypoxia/reoxygenation-mediated injury. FEBS Lett 424:197–201. doi:10.1016/S0014-5793(98)00173-2

    Article  PubMed  CAS  Google Scholar 

  • Vassalli JD, Sappino AP, Belin D (1991) The plasminogen activator/plasmin system. J Clin Invest 88:1067–1072. doi:10.1172/JCI115405

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Lee SR, Guo SZ, Kim WJ, Montaner J, Wang X et al (2006) Reduction of tissue plasminogen activator-induced matrix metalloproteinase-9 by simvastatin in astrocytes. Stroke 37:1910–1912. doi:10.1161/01.STR.0000226923.48905.39

    Article  PubMed  CAS  Google Scholar 

  • Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA (2003) Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 112:1533–1540

    PubMed  CAS  Google Scholar 

  • Youdim KA, Avdeef A, Abbott NJ (2003) In vitro trans-monolayer permeability calculations: often forgotten assumptions. Drug Discov Today 8:997–1003. doi:10.1016/S1359-6446(03)02873-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

tPA was obtained as a generous gift from Kyowa Hakko Kogyo Co, Japan. We wish to thank Yoshisada Shibata, Maria A. Deli, Kunihiko Tanaka, Yasuko Yamashita, Yoshihiro Takaya, Shoji Horai, Yoichi Morofuji, Takanori Shimono, and Makiko Yamaguchi for their critical reviews of the manuscript and outstanding professional guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Hiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiu, T., Nakagawa, S., Hayashi, K. et al. Tissue Plasminogen Activator Enhances the Hypoxia/reoxygenation-induced Impairment of the Blood–brain Barrier in a Primary Culture of Rat Brain Endothelial Cells. Cell Mol Neurobiol 28, 1139–1146 (2008). https://doi.org/10.1007/s10571-008-9294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9294-x

Keywords

Navigation