Skip to main content
Log in

l-Carnitine Blood Levels and Oxidative Stress in Treated Phenylketonuric Patients

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aims l-Carnitine exerts an important role by facilitating the mitochondrial transport of fatty acids, but is also a scavenger of free radicals, protecting cells from oxidative damage. Phenylketonuria (PKU), an inborn error of phenylalanine (Phe) metabolism, is currently treated with a special diet consisting of severe restriction of protein-enriched foods, therefore potentially leading to l-carnitine depletion. The aim of this study was to determine l-carnitine levels and oxidative stress parameters in blood of two groups of PKU patients, with good and poor adherence to treatment. Methods Treatment of patients consisted of a low protein diet supplemented with a synthetic amino acids formula not containing Phe, l-carnitine, and selenium. l-Carnitine concentrations and the oxidative stress parameters thiobarbituric acid reactive species (TBARS) and total antioxidant reactivity (TAR) were measured in blood of the two groups of treated PKU patients and controls. Results We verified a significant decrease of serum l-carnitine levels in patients who strictly adhered to the diet, as compared to controls and patients who did not comply with the diet. Furthermore, TBARS measurement was significantly increased and TAR was significantly reduced in both groups of phenylketonuric patients relatively to controls. We also found a significant negative correlation between TBARS and l-carnitine levels and a significant positive correlation between TAR and l-carnitine levels in well-treated PKU patients. Conclusions Our results suggest that l-carnitine should be measured in plasma of treated PKU patients, and when a decrease of this endogenous component is detected in plasma, supplementation should be considered as an adjuvant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Artuch R, Colome C, Sierra C, Brandi N, Lambruschini N, Campistol J, Ugarte D, Vilaseca MA (2004) A longitudinal study of antioxidant status in phenylketonuric patients. Clin Biochem 37:198–203. doi:10.1016/j.clinbiochem.2003.10.017

    Article  PubMed  CAS  Google Scholar 

  • Bahl JJ, Bressler R (1987) The pharmacology of l-carnitine. Annu Rev Pharmacol Toxicol 24:257–277. doi:10.1146/annurev.pa.27.040187.001353

    Article  Google Scholar 

  • Bertelli A, Conte A, Ronca G (1994) l-propyonil carnitine protects erythrocytes and low density lipoproteins against peroxidation. Drugs Exp Clin Res 20:191–197

    PubMed  CAS  Google Scholar 

  • Böhles H, Ullrich K, Endres W, Behbehani AW, Wendel U (1991) Inadequate iron availability as a possible cause of low serum l-carnitine concentrations in patients with phenylketonuria. Eur J Pediatr 150:425–428. doi:10.1007/BF02093725

    Article  PubMed  Google Scholar 

  • Bremer J (1983) Carnitine metabolism and functions. Physiol Rev 63:1420–1480

    PubMed  CAS  Google Scholar 

  • Brown GC (1999) Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1411:351–369. doi:10.1016/S0005-2728(99)00025-0

    Article  PubMed  CAS  Google Scholar 

  • Colome C, Sierra C, Vilaseca MA (2000) Congenital errors of metabolism: cause of oxidative stress? Med Clin 115:111–117

    CAS  Google Scholar 

  • De Sousa C, English NR, Stacey TE, Chalmers RA (1990) Measurement of l-carnitine and acylcarnitines in body fluids and tissues in children and in adults. Clin Chim Acta 187:317–328. doi:10.1016/0009-8981(90)90117-B

    Article  PubMed  Google Scholar 

  • Di Giacomo C, Latteri F, Fichera C, Sorrenti V, Campisi A, Castorina C, Russo A, Pinturo R, Vanella A (1993) Effect of acetyl-l-l-carnitine on lipid peroxidation and xanthine oxidase activity in rat skeletal muscle. Neurochem Res 18:1157–1162. doi:10.1007/BF00978367

    Article  PubMed  CAS  Google Scholar 

  • Ercal N, Aykin-Burns N, Gurer-Orhan H, Mcdonald JD (2002) Oxidative stress in a phenylketonuria animal model. Free Radic Biol Med 32:906–911. doi:10.1016/S0891-5849(02)00781-5

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. doi:10.1016/0076-6879(90)86134-H

    Article  PubMed  CAS  Google Scholar 

  • Fariello RG, Calabrese F (1988) Prevention of ischemia induced increase in MDA by acetyl carnitine. Ann Neurol 24:114–118

    Google Scholar 

  • Ferrari R, Ciampalini G, Agnoletti G, Cargnoni A, Ceconi C, Visioli O (1988) Effect of l-carnitine derivatives on heart mitochondrial damage induced by lipid peroxidation. Pharmacol Res Commun 20:125–132. doi: 10.1016/S0031-6989(88)80005-5

    Article  PubMed  CAS  Google Scholar 

  • Fritz IB, Arrigoni-Martelli E (1993) Sites of action of carnitine and its derivatives on the cardiovascular system: interactions with membranes. Trends Pharmacol Sci 14:355–360. doi:10.1016/0165-6147(93)90093-Y

    Article  PubMed  CAS  Google Scholar 

  • Giovanini M, Verduci E, Salvatici E, Fiori L, Riva E (2007) Phenylketonuria: dietary and therapeutic challenges. J Inherit Metab Dis 30:145–152. doi:10.1007/s10545-007-0552-8

    Article  Google Scholar 

  • Gülçin I (2006) Antioxidant and antiradical activities of l-carnitine. Life Sci 78:803–811. doi:10.1016/j.lfs.2005.05.103

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2001) Oxidative stress: adaptation, damage, repair and death. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 246–350

    Google Scholar 

  • Hendriksz CJ, Walter JH (2004) Update on phenylketonuria. Curr Paediatr 14:400–406. doi:10.1016/j.cupe.2004.05.003

    Article  Google Scholar 

  • Izgut-Uysal VN, Agac A, Derin N (2001) Effect of carnitine on stress-induced lipid peroxidation in rat gastric mucosa. J Gastroenterol 36:231–236. doi:10.1007/s005350170108

    Article  PubMed  CAS  Google Scholar 

  • Koudelova J, Mourek J, Drahota Z, Rauchova H (1994) Protective effect of carnitine on lipoperoxide formation in rat brain. Physiol Res 43:387–389

    PubMed  CAS  Google Scholar 

  • Kremser K, Stangl H, Pahan K, Singh I (1995) Nitric oxide regulates peroxisomal enzyme activities. Eur J Clin Chem Clin Biochem 33:763–774

    PubMed  CAS  Google Scholar 

  • Lissi E, Salim-Hanna M, Pascual C, Del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158. doi:10.1016/0891-5849(94)00117-3

    Article  PubMed  CAS  Google Scholar 

  • Lowitt S, Malone JI, Salem AF, Korthals J, Benford S (1995) Acetyl-l-carnitine corrects the altered peripheral nerve function of experimental diabetes. Metab Clin Exp 44:677–680

    PubMed  CAS  Google Scholar 

  • Matalon R, Michals-Matalon K, Bhatia G, Grechanina E, Novikov P, McDonald JD, Grady J, Tyring SK, Guttler F (2006) Large neutral amino acids in the treatment of phenylketonuria (PKU). J Inherit Metab Dis 29:732–738. doi:10.1007/s10545-006-0395-8

    Article  PubMed  CAS  Google Scholar 

  • McCaman MW, Robins E (1962) Fluorimetric method for the determination of phenylalanine in serum. J Lab Clin Med 59:885–890

    CAS  Google Scholar 

  • Pons R, De Vivo DC (1995) Primary and secondary carnitine deficiency syndromes. J Child Neurol 2:8–24

    Google Scholar 

  • Reilly C, Barrett JE, Patterson CM, Tinggi U, Latham SL, Marrinan A (1990) Trace element nutrition status and dietary intake of children with phenylketonuria. Am J Clin Nutr 52:159–165

    PubMed  CAS  Google Scholar 

  • Schulpis KH, Nounopoulos C, Scarpalezou A, Bouloukos A, Missiou-Tsagarakis S (1990) Serum carnitine level in phenylketonuric children under dietary control in Greece. Acta Paediatr Scand 79:930–934. doi:10.1111/j.1651-2227.1990.tb11354.x

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1667–1724

    Google Scholar 

  • Sierra C, Vilaseca MA, Moyano D, Brandi N, Campistol J, Lambruschini N, Cambra FJ, Deulofeu R, Mira A (1998) Antioxidant status in hyperphenylalaninemia. Clin Chim Acta 276:1–9. doi:10.1016/S0009-8981(98)00091-6

    Article  PubMed  CAS  Google Scholar 

  • Silva-Adaya D, Pérez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villena-Hernández J, Binienda Z, Ali SF, Santamaría A (2008) Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of l-carnitine. J Neurochem 105:677–689. doi:10.1111/j.1471-4159.2007.05174.x

    Article  PubMed  CAS  Google Scholar 

  • Sirtori LR, Dutra-Filho CS, Fitarelli D, Sitta A, Haeser A, Barschak AG, Wajner M, Coelho DM, Llesuy S, Belló-Klein A, Giugliani R, Deon M, Vargas CR (2005) Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta 1740:68–73

    PubMed  CAS  Google Scholar 

  • Sitta A, Barschak AG, Deon M, Terroso T, Pires R, Giugliani R, Dutra-Filho CS, Wajner M, Vargas CR (2006) Investigation of oxidative stress parameters in treated phenylketonuric patients. Metab Brain Dis 21:287–296. doi:10.1007/s11011-006-9035-0

    Article  PubMed  CAS  Google Scholar 

  • Stanley CA (2004) l-carnitine deficiency disorders in children. Ann NY Acad Sci 1033:42–51. doi:10.1196/annals.1320.004

    Article  PubMed  CAS  Google Scholar 

  • Start K (1998) Treating phenylketonuria by a phenylalanine-free diet. Prof Care Mother Child 8:109–110

    PubMed  CAS  Google Scholar 

  • van Backel MME, Printzen G, Wermuth B, Wiesmann UN (2000) Antioxidant and thyroid hormone status in selenium-deficient phenylketonuric and hyperphenylalaninemic patients. Am J Clin Nutr 72:976–981

    Google Scholar 

  • Vilaseca MA, Briones P, Ferrer I, Campistol J, Riverola A, Castillo P, Ramon F (1993) Controlled diet in phenylketonuria may cause serum l-carnitine deficiency. J Inherit Metab Dis 16:101–104. doi:10.1007/BF00711322

    Article  PubMed  CAS  Google Scholar 

  • Virmani A, Binienda Z (2004) Role of l-carnitine esters in brain neuropathology. Mol Aspects Med 25:533–539. doi:10.1016/j.mam.2004.06.003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from FAPERGS, CNPq, and FIPE/HCPA-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen R. Vargas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitta, A., Barschak, A.G., Deon, M. et al. l-Carnitine Blood Levels and Oxidative Stress in Treated Phenylketonuric Patients. Cell Mol Neurobiol 29, 211–218 (2009). https://doi.org/10.1007/s10571-008-9313-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9313-y

Keywords

Navigation