Skip to main content

Advertisement

Log in

Intrathecal NGF Administration Reduces Reactive Astrocytosis and Changes Neurotrophin Receptors Expression Pattern in a Rat Model of Neuropathic Pain

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nerve growth factor (NGF), an essential peptide for sensory neurons, seems to have opposite effects when administered peripherally or directly to the central nervous system. We investigated the effects of 7-days intrathecal (i.t.) infusion of NGF on neuronal and glial spinal markers relevant to neuropathic behavior induced by chronic constriction injury (CCI) of the sciatic nerve. Allodynic and hyperalgesic behaviors were investigated by Von Frey and thermal Plantar tests, respectively. NGF-treated animals showed reduced allodynia and thermal hyperalgesia, compared to control animals. We evaluated on lumbar spinal cord the expression of microglial (ED-1), astrocytic (GFAP and S-100β), and C- and Aδ-fibers (SubP, IB-4 and Cb) markers. I.t. NGF treatment reduced reactive astrocytosis and the density of SubP, IB4 and Cb positive fibers in the dorsal horn of injured animals. Morphometric parameters of proximal sciatic nerve stump fibers and cells in DRG were also analyzed in CCI rats: myelin thickness was reduced and DRG neurons and satellite cells appeared hypertrophic. I.t. NGF treatment showed a beneficial effect in reversing these molecular and morphological alterations. Finally, we analyzed by immunohistochemistry the expression pattern of neurotrophin receptors TrkA, pTrkA, TrkB and p75NTR. Substantial alterations in neurotrophin receptors expression were observed in the spinal cord of CCI and NGF-treated animals. Our results indicate that i.t. NGF administration reverses the neuro-glial morphomolecular changes occurring in neuropathic animals paralleled by alterations in neurotrophin receptors ratio, and suggest that NGF is effective in restoring homeostatic conditions in the spinal cord and maintaining analgesia in neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NGF:

Nerve growth factor

CCI:

Chronic constriction injury

GFAP:

Glial fibrillary acidic protein

SubP:

Substance P

IB-4:

Isolectin B4

Cb:

Calbindin

Trk:

Tyrosine kinase receptor

pTrkA:

Phosphorylated TrkA

p75NTR :

p75 neurotrophin receptor

i.t.:

Intrathecal

DRG:

Dorsal root ganglia

CNS:

Central nervous system

References

  • Allen NJ, Barres BA (2009) Neuroscience: Glia–more than just brain glue. Nature 457:675–677

    Article  CAS  PubMed  Google Scholar 

  • Andreev NY, Dimitrieva N, Koltzenburg M, McMahon SB (1995) Peripheral administration of nerve growth factor in the adult rat produces a thermal hyperalgesia that requires the presence of sympathetic post-ganglionic neurones. Pain 63:109–115

    Article  CAS  PubMed  Google Scholar 

  • Apfel SC (2002) Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol 50:393–413

    Article  CAS  PubMed  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  CAS  PubMed  Google Scholar 

  • Blochl A, Blochl R (2007) A cell-biological model of p75NTR signaling. J Neurochem 102:289–305

    Article  CAS  PubMed  Google Scholar 

  • Bowles WR, Sabino M, Harding-Rose C, Hargreaves KM (2004) Nerve growth factor treatment enhances release of immunoreactive calcitonin gene-related peptide but not substance P from spinal dorsal horn slices in rats. Neurosci Lett 363:239–242

    Article  CAS  PubMed  Google Scholar 

  • Cahill CM, Dray A, Coderre TJ (2003) Intrathecal nerve growth factor restores opioid effectiveness in an animal model of neuropathic pain. Neuropharmacology 45:543–552

    Article  CAS  PubMed  Google Scholar 

  • Cavaliere C, Cirillo G, Bianco MR, Rossi F, De Novellis V, Maione S, Papa M (2007) Gliosis alters expression and uptake of spinal glial amino acid transporters in a mouse neuropathic pain model. Neuron Glia Biol 3:141–153

    Article  PubMed  Google Scholar 

  • Chan JR, Watkins TA, Cosgaya JM, Zhang C, Chen L, Reichardt LF, Shooter EM, Barres BA (2004) NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43:183–191

    Article  CAS  PubMed  Google Scholar 

  • Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52:259–285

    Article  CAS  PubMed  Google Scholar 

  • Colangelo AM, Bianco MR, Vitagliano L, Cavaliere C, Cirillo G, De GL, Diana D, Colombo D, Redaelli C, Zaccaro L, Morelli G, Papa M, Sarmientos P, Alberghina L, Martegani E (2008) A new nerve growth factor-mimetic peptide active on neuropathic pain in rats. J Neurosci 28:2698–2709

    Article  CAS  PubMed  Google Scholar 

  • Cragnolini AB, Friedman WJ (2008) The function of p75NTR in glia. Trends Neurosci 31:99–104

    Article  CAS  PubMed  Google Scholar 

  • Cragnolini AB, Huang Y, Gokina P and Friedman WJ (2009) Nerve growth factor attenuates proliferation of astrocytes via the p75 neurotrophin receptor. Glia (in press)

  • Deng YS, Zhong JH, Zhou XF (2000) Effects of endogenous neurotrophins on sympathetic sprouting in the dorsal root ganglia and allodynia following spinal nerve injury. Exp Neurol 164:344–350

    Article  CAS  PubMed  Google Scholar 

  • Fellin T, Carmignoto G (2004) Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol 559:3–15

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni R, Maggio N, Rosaria BM, Cavaliere C, Cirillo G, Lavitrano M, Papa M (2007) Reactive astrocytosis and glial glutamate transporter clustering are early changes in a spinocerebellar ataxia type 1 transgenic mouse model. Neuron Glia Biol 3:335–351

    Article  PubMed  Google Scholar 

  • Goettl VM, Hussain SR, Alzate O, Wirtz DJ, Stephens RL Jr, Hackshaw KV (2004) Differential change in mRNA expression of p75 and Trk neurotrophin receptors in nucleus gracilis after spinal nerve ligation in the rat. Exp Neurol 187:533–536

    Article  CAS  PubMed  Google Scholar 

  • Gold BG, Mobley WC, Matheson SF (1991) Regulation of axonal caliber, neurofilament content, and nuclear localization in mature sensory neurons by nerve growth factor. J Neurosci 11:943–955

    CAS  PubMed  Google Scholar 

  • Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    Article  CAS  PubMed  Google Scholar 

  • Hefti FF, Rosenthal A, Walicke PA, Wyatt S, Vergara G, Shelton DL, Davies AM (2006) Novel class of pain drugs based on antagonism of NGF. Trends Pharmacol Sci 27:85–91

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  Google Scholar 

  • Ji RR, Strichartz G (2004) Cell signaling and the genesis of neuropathic pain. Sci STKE 2004:reE14

  • Levi-Montalcini R (1952) Effects of mouse tumor transplantation on the nervous system. Ann N Y Acad Sci 55:330–344

    Article  CAS  PubMed  Google Scholar 

  • Lobsiger CS, Cleveland DW (2007) Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 10:1355–1360

    Article  CAS  PubMed  Google Scholar 

  • Malcangio M, Ramer MS, Boucher TJ, McMahon SB (2000) Intrathecally injected neurotrophins and the release of substance P from the rat isolated spinal cord. Eur J NeuroSci 12:139–144

    Article  CAS  PubMed  Google Scholar 

  • McArthur JC, Yiannoutsos C, Simpson DM, Adornato BT, Singer EJ, Hollander H, Marra C, Rubin M, Cohen BA, Tucker T, Navia BA, Schifitto G, Katzenstein D, Rask C, Zaborski L, Smith ME, Shriver S, Millar L, Clifford DB, Karalnik IJ (2000) A phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection. AIDS Clinical Trials Group Team 291. Neurology 54:1080–1088

    CAS  PubMed  Google Scholar 

  • Mocchetti I, Wrathall JR (1995) Neurotrophic factors in central nervous system trauma. J Neurotrauma 12:853–870

    Article  CAS  PubMed  Google Scholar 

  • Musholt K, Cirillo G, Cavaliere C, Rosaria BM, Bock J, Helmeke C, Braun K, Papa M (2009) Neonatal separation stress reduces glial fibrillary acidic protein- and S100beta-immunoreactive astrocytes in the rat medial precentral cortex. Dev Neurobiol 69:203–211

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Myers RR (1999) Myelinated afferents sprout into lamina II of L3–5 dorsal horn following chronic constriction nerve injury in rats. Brain Res 818:285–290

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Yajima Y, Aoki T, Ozaki S, Mizoguchi H, Tseng LF, Suzuki T (2000) Up-regulation of the TrkB receptor in mice injured by the partial ligation of the sciatic nerve. Eur J Pharmacol 401:187–190

    Article  CAS  PubMed  Google Scholar 

  • Owolabi JB, Rizkalla G, Tehim A, Ross GM, Riopelle RJ, Kamboj R, Ossipov M, Bian D, Wegert S, Porreca F, Lee DK (1999) Characterization of antiallodynic actions of ALE-0540, a novel nerve growth factor receptor antagonist, in the rat. J Pharmacol Exp Ther 289:1271–1276

    CAS  PubMed  Google Scholar 

  • Raivich G, Kreutzberg GW (1987) Expression of growth factor receptors in injured nervous tissue. I. Axotomy leads to a shift in the cellular distribution of specific beta-nerve growth factor binding in the injured and regenerating PNS. J Neurocytol 16:689–700

    Article  CAS  PubMed  Google Scholar 

  • Ren K, Thomas DA, Dubner R (1995) Nerve growth factor alleviates a painful peripheral neuropathy in rats. Brain Res 699:286–292

    Article  CAS  PubMed  Google Scholar 

  • Ro LS, Chen ST, Tang LM, Jacobs JM (1999) Effect of NGF and anti-NGF on neuropathic pain in rats following chronic constriction injury of the sciatic nerve. Pain 79:265–274

    Article  CAS  PubMed  Google Scholar 

  • Rudge JS, Li Y, Pasnikowski EM, Mattsson K, Pan L, Yancopoulos GD, Wiegand SJ, Lindsay RM, Ip NY (1994) Neurotrophic factor receptors and their signal transduction capabilities in rat astrocytes. Eur J NeuroSci 6:693–705

    Article  CAS  PubMed  Google Scholar 

  • Sah DW, Ossipo MH, Porreca F (2003) Neurotrophic factors as novel therapeutics for neuropathic pain. Nat Rev Drug Discov 2:460–472

    Article  CAS  PubMed  Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Tal M, Bennett GJ (1994) Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain 57:375–382

    Article  CAS  PubMed  Google Scholar 

  • Wall PD, Gutnick M (1974) Properties of afferent nerve impulses originating from a neuroma. Nature 248:740–743

    Article  CAS  PubMed  Google Scholar 

  • Watkins LR, Maier SF (2003) Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2:973–985

    Article  CAS  PubMed  Google Scholar 

  • Watson JJ, Allen SJ, Dawbarn D (2008) Targeting nerve growth factor in pain: what is the therapeutic potential? BioDrugs 22(6):349–359

    Article  CAS  PubMed  Google Scholar 

  • Wild KD, Bian D, Zhu D, Davis J, Bannon AW, Zhang TJ, Louis JC (2007) Antibodies to nerve growth factor reverse established tactile allodynia in rodent models of neuropathic pain without tolerance. J Pharmacol Exp Ther 322:282–287

    Article  CAS  PubMed  Google Scholar 

  • Yajima Y, Narita M, Narita M, Matsumoto N, Suzuki T (2002) Involvement of a spinal brain-derived neurotrophic factor/full-length TrkB pathway in the development of nerve injury-induced thermal hyperalgesia in mice. Brain Res 958:338–346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Regione Campania (L.R. N.5 Bando 2003 to M.P.), the Italian Minister of Research and University (PRIN2007 to M.P. and to A.M.C.), Regione Campania (Prog. Spec art 12 E.F. 2000 to M.P.), the CNR (Neurobiotecnologie 2003 to M.P.) and FIRB-ITALBIONET to L.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Papa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirillo, G., Cavaliere, C., Bianco, M.R. et al. Intrathecal NGF Administration Reduces Reactive Astrocytosis and Changes Neurotrophin Receptors Expression Pattern in a Rat Model of Neuropathic Pain. Cell Mol Neurobiol 30, 51–62 (2010). https://doi.org/10.1007/s10571-009-9430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9430-2

Keywords

Navigation