Skip to main content

Advertisement

Log in

Protective Effects of Adeno-associated Virus Mediated Brain-derived Neurotrophic Factor Expression on Retinal Ganglion Cells in Diabetic Rats

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Adeno-associated virus vector plasmid carrying the expression cassette of brain-derived neurotrophic factor (BDNF), pAAV-BDNF, was constructed and packaged into recombinant adeno-associated virus (rAAV-BDNF). The rAAV-BDNF was intravitreally injected into streptzotocin (STZ)-induced diabetic Sprague–Dawley (SD) Rats. Data showed that over-expression of BDNF could increase alive retinal ganglion cell (RGC) number and improve its function in streptzotocin(STZ)-induced diabetic rats, which might be a new method to treat diabetic neuropathy and retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374:450–453

    Article  PubMed  CAS  Google Scholar 

  • Akhtar N, Akram M, Asif HM, Usmanghani K, Ali Shah SM, Ahmad Rao S, Uzair M, Shaheen G, Ahmad K (2011) Gene therapy: a review article. Fly1 J Med Plants Res 5(10):1812–1817

    CAS  Google Scholar 

  • Algan M, Ziegler O, Gehin P, Got I, Raspiller A, Weber M, Genton P, Saudax E, Drouin P (1989) Visual evoked potentials in diabetic patients. Diabetes Care 12:227–229

    Article  PubMed  CAS  Google Scholar 

  • American Diabetes Association (2007) Diagnosis and classification of diabetes mellitus. Diabetes Care 30(Supp1):S42–S47

    Article  Google Scholar 

  • Baillart JP, L’examen FM (1954) Rapport à la Société d’Ophthalmologie de Paris. Bull Soc Ophthalmol Fr 4(Suppl):I–LXVII

    Google Scholar 

  • Bloomgarden ZT (2008) Diabetic retinopathy. Diabetes Care 31:1080–1083

    Article  PubMed  Google Scholar 

  • Bresnick GH, Korth K, Groo A, Palta M (1984) Electroretinographic oscillatory potentials predict progression of diabetic retinopathy. Preliminary report. Arch Ophthalmol 102:1307–1311

    Article  PubMed  CAS  Google Scholar 

  • Caputo S, Di Leo MA, Falsini B, Ghirlanda G, Porciatti V, Minella A, Greco AV (1990) Evidence for early impairment of macular function with pattern ERG in type I diabetic patients. Diabetes Care 13:412–418

    Article  PubMed  CAS  Google Scholar 

  • Center for disease control and prevention (2011) National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States. U.S department of health and human services, Center for disease control and prevention, Atlanta

    Google Scholar 

  • Chaturvedi N, Sjolie AK, Stephenson JM, Abrahamian H, Keipes M, Castellarin A, Rogulja-Pepeonik Z, Fuller JH (1998) Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID Study Group. EURODIAB controlled trial of lisinopril in insulin-dependent diabetes mellitus. Lancet 351:28–31

    Article  PubMed  CAS  Google Scholar 

  • Cobb WA, Morton HB (1953) A new component of the human electroretinogram. J Physiol (Lond) 123:36–37

    Google Scholar 

  • The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Article  Google Scholar 

  • Di Leo MA, Falsini B, Caputo S, Ghirlanda G, Porciatti V, Greco AV (1990) Spatial frequency-selective losses with pattern electroretinogram in type 1 (insulin-dependent) diabetic patients without retinopathy. Diabetologia 33:726–730

    Article  PubMed  CAS  Google Scholar 

  • Ewing FM, Deary IJ, Strachan MW, Frier BM (1998) Seeing beyond retinopathy in diabetes: electrophysiological and psychophysical abnormalities and alterations in vision. Endocr Rev 19:462–476

    Article  PubMed  CAS  Google Scholar 

  • Fletcher EL, Phipps JA, Ward MM, Puthussery T, Wilkinson-Berka JL (2007) Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr Pharm Des 13:2699–2712

    Article  PubMed  CAS  Google Scholar 

  • Franchi A, Magni R, Lodigiani L, Cordella M (1987) VEP pattern after photostress: an index of macular function. Graefes Arch Clin Exp Ophthalmol 225:291–294

    Article  PubMed  CAS  Google Scholar 

  • Giraldi A, Persson K, Werkstrom V, Alm P, Wagner G, Andersson KE (2001) Effects of diabetes on neurotransmission in rat vaginal smooth muscle. Int J Impot Res 13:58–66

    Article  PubMed  CAS  Google Scholar 

  • Green M, Loewenstein PM (2006) Human adenoviruses: propagation, purification, quantification, and storage. Curr Protoc Microbiol, Chap. 14: unit 14C, p 11

  • Grimm D, Kay MA, Kleinschmidt JA (2003) Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vector of serotypes 1 to 6. Mol Ther 7:839–850

    Article  PubMed  CAS  Google Scholar 

  • Halliday AM (1993) The visual evoked potential in healthy subjects. In: Halliday AM (ed) Evoked potentials in clinical testing, 2nd edn. Churchill Livingstone, Edinburgh, pp 57–113

    Google Scholar 

  • Holemans K, Van Bree R, Verhaeghe J, Meurrens K, Van Assche FA (1997) Maternal semistarvation and streptozotocin-diabetes in rats have different effects on the in vivo glucose uptake by peripheral tissues in their female adult offspring. J Nutr 127:1371–1376

    PubMed  CAS  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  PubMed  CAS  Google Scholar 

  • Jehle T, Wingert K, Dimitriu C, Meschede W, Lasseck J, Bach M, Lagreze WA (2008) Quantification of ischemic damage in the rat retina: a comparative study using evoked potentials, electroretinography, and histology. Invest Ophthalmol Vis Sci 49:1056–1064

    Article  PubMed  Google Scholar 

  • Johnson JE, Barde YA, Schwab M, Thoenen H (1986) Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J Neurosci 6:3031–3038

    PubMed  CAS  Google Scholar 

  • Karunanayake EH, Hearse DJ, Mellows G (1975) The metabolic fate and elimination of streptozotocin. Biochem Soc Trans 3:410–414

    PubMed  CAS  Google Scholar 

  • Kern TS, Barber AJ (2008) Retinal ganglion cells in diabetes. J Physiol 586:4401–4408

    Article  PubMed  CAS  Google Scholar 

  • Kern TS, Miller CM, Du Y, Zheng L, Mohr S, Ball SL, Kim M, Jamison JA, Bingaman DP (2007) Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes 56:373–379

    Article  PubMed  CAS  Google Scholar 

  • Kohzaki K, Vingrys AJ, Bui BV (2008) Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 49:3595–3604

    Article  PubMed  Google Scholar 

  • Laquis S, Chaudhary P, Sharma SC (1998) The patterns of retinal ganglion cell death in hypertensive eyes. Brain Res 784:100–104

    Article  PubMed  CAS  Google Scholar 

  • Lovasik JV (1983) An electrophysiological investigation of the macular photostress test. Invest Ophthalmol Vis Sci 24:437–441

    PubMed  CAS  Google Scholar 

  • Lovasik JV, Kergoat H (1993) Electroretinographic results and ocular vascular perfusion in type 1 diabetes. Invest Ophthalmol Vis Sci 34:1731–1743

    PubMed  CAS  Google Scholar 

  • Luu CD, Szental JA, Lee SY, Lavanya R, Wong TY (2010) Correlation between retinal oscillatory potentials and retinal vascular caliber in type 2 diabetes. Invest Ophthalmol Vis Sci 51:482–486

    Article  PubMed  Google Scholar 

  • Machemer R, Sugita G, Tano Y (1979) Treatment of intraocular proliferations with intravitreal steroids. Trans Am Ophthalmol Soc 77:171–180

    PubMed  CAS  Google Scholar 

  • Mansford KR, Opie L (1968) Comparison of metabolic abnormalities in diabetes mellitus induced by streptozotocin or by alloxan. Lancet 1:670–671

    Article  PubMed  CAS  Google Scholar 

  • Maritim AC, Sanders RA, Watkins JB III (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  PubMed  CAS  Google Scholar 

  • Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, Drummond K, Donnelly S, Goodyer P, Gubler MC et al (2009) Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 361:40–51

    Article  PubMed  CAS  Google Scholar 

  • Moreo G, Mariani E, Pizzamiglio G, Colucci GB (1995) Visual evoked potentials in NIDDM: a longitudinal study. Diabetologia 38:573–576

    Article  PubMed  CAS  Google Scholar 

  • Mosci C, Polizzi A, Grillo N, Capris P, Zingirian M (1986) Ottimizzazione del test del recupero maculare nello studio dei soggetti diabetici. Bol Ocul 65:347–356

    Google Scholar 

  • Ozkaya YG, Agar A, Hacioglu G, Yargicoglu P (2007) Exercise improves visual deficits tested by visual evoked potentials in streptozotocin-induced diabetic rats. Tohoku J Exp Med 213:313–321

    Article  PubMed  CAS  Google Scholar 

  • Pan CH, Chen SS (1992) Pattern shift visual evoked potentials in diabetes mellitus. Gaoxiong Yi Xue Ke Xue Za Zhi 8:374–383

    PubMed  CAS  Google Scholar 

  • Papakostopoulos D, Hart JC, Corrall RJ, Harney B (1996) The scotopic electroretinogram to blue flashes and pattern reversal visual evoked potentials in insulin dependent diabetes. Int J Psychophysiol 21:33–43

    Article  PubMed  CAS  Google Scholar 

  • Parisi V (2001) Electrophysiological evaluation of the macular cone adaptation: VEP after photostress. A review. Doc Ophthalmol 102:251–262

    Article  PubMed  CAS  Google Scholar 

  • Park K, Ryu SB, Park YI, Ahn K, Lee SN, Nam JH (2001) Diabetes mellitus induces vaginal tissue fibrosis by TGF-beta 1 expression in the rat model. J Sex Marital Ther 27:577–587

    Article  PubMed  CAS  Google Scholar 

  • Parrilla-Reverter G, Agudo M, Sobrado-Calvo P, Salinas-Navarro M, Villegas-Pe′rez MP, Vidal-Sanz M (2009) Effects of different neurotrophic factors on the survival of retinal ganglion cells after a complete intraorbital nerve crush injury: a quantitative in vivo study. Exp Eye Res 89:32–41

    Article  PubMed  CAS  Google Scholar 

  • Phipps JA, Yee P, Fletcher EL, Vingrys AJ (2006) Rod photoreceptor dysfunction in diabetes: activation, deactivation, and dark adaptation. Invest Ophthalmol Vis Sci 47:3187–3194

    Article  PubMed  Google Scholar 

  • Puvanendran K, Devathasan G, Wong PK (1983) Visual evoked responses in diabetes. J Neurol Neurosurg Psychiatry 46:643–647

    Article  PubMed  CAS  Google Scholar 

  • Raman PG, Sodani A, George B (1997) A study of visual evoked potential changes in diabetes mellitus. Int J Diab Dev Ctries 17:69–73

    Google Scholar 

  • Rancz EA, Franks KM, Schwarz MK, Pichler B, Schaefer AT, Margrie TW (2011) Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nat Neurosci 14:527–532

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Tanaka T, Nawa H, Usui T, Fukuchi T, Ikeda K, Abe H, Takei N (2004) Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells. Diabetes 53:2412–2419

    Article  PubMed  CAS  Google Scholar 

  • Shevtsova Z, Malik JMI, Michel U, Bähr M, Kügler S (2004) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 90:53–59

    Article  PubMed  Google Scholar 

  • Shpak AA, Gavrilova NA, Poliakova MA (2010) Brain-derived neurotrophic factor in diabetic retinopathy and asymptomatic edema of the optic nerve head. Vestn oftalmol 126:7–10

    PubMed  CAS  Google Scholar 

  • UK Prospective Diabetes Study Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 317:703–713

    Article  Google Scholar 

  • Usta MF, Bivalacqua TJ, Yang DY, Ramanitharan A, Sell DR, Viswanathan A, Monnier VM, Hellstrom WJ (2003) The protective effect of aminoguanidine on erectile function in streptozotocin diabetic rats. J Urol 170:1437–14422

    Article  PubMed  CAS  Google Scholar 

  • Vadala M, Anastasi M, Lodato G, Cillino S (2002) Electroretinographic oscillatory potentials in insulin-dependent diabetes patients: a long-term follow-up. Acta Ophthalmol Scand 80:305–309

    Article  PubMed  Google Scholar 

  • Vavra JJ, Deboer C, Dietz A, Hanka LJ, Sokolski WT (1959) Streptozotocin, a new antibacterial antibiotic. Antibiot Annu 7:230–235

    PubMed  Google Scholar 

  • Weymouth AE, Vingrys AJ (2008) Rodent electroretinography: methods for extraction and interpretation of rod and cone responses. Prog Retin Eye Res 27:1–44

    Article  PubMed  CAS  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  • Wu G, Weiter JJ, Santos S, Ginsburg L, Villalobos R (1990) The macular photostress test in diabetic retinopathy and age-related macular degeneration. Arch Ophthalmol 108:1556–1558

    Article  PubMed  CAS  Google Scholar 

  • Yonemura D, Aoki T, Tsuzuki K (1962) Electroretinogram in diabetic retinopathy. Arch Ophthalmol 68:19–24

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Pang S, Che G (2009) Specificity and sensitivity of visual evoked potentials P100 latency to different events exercise. Health 1:47–50

    Article  Google Scholar 

  • Zingirian M, Polizzi A, Grillo N (1985) The macular recovery test after photostress in normal and diabetic subjects. Acta Diabetol Lat 22:169–172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shigang He and Dr. Ruotong Ren (Institute of biophysics, Chinese academy of sciences) for their help with data collection.

Conflicts of interest

No potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-nian Zhang.

Additional information

Yan Gong, Zhan-Ping Chang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Y., Chang, ZP., Ren, RT. et al. Protective Effects of Adeno-associated Virus Mediated Brain-derived Neurotrophic Factor Expression on Retinal Ganglion Cells in Diabetic Rats. Cell Mol Neurobiol 32, 467–475 (2012). https://doi.org/10.1007/s10571-011-9779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9779-x

Keywords

Navigation