Skip to main content
Log in

Involvement of NF Kappa B in Potentiated Effect of Mn-containing Dithiocarbamates on MPP+ Induced Cell Death

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Humans are exposed to various chemical mixtures daily. The toxic response to a mixture of chemicals could be potentiated or suppressed. This study demonstrates that non-toxic doses of pesticides can induce cellular changes that increase cell sensitivity to other toxins or stress. Pesticide exposure is an environmental risk factor for Parkinson’s disease. Manganese (Mn) is essential but high dose exposure may results in neurological dysfunction. Mn-containing dithiocarbamates, maneb (MB) and mancozeb (MZ), are primarily used as pesticides. Studies have shown that MB can augment dopaminergic damage triggered by sub-toxic doses of Parkinsonian mimetic MPTP. However, the mechanism underlying this effect is not clear. Activation of nuclear factor kappa B (NF-κB) has been implicated in MPTP toxicity. Mn stimulates the activation of NF-κB and subsequently induces neuronal injury via an NF-κB dependent mechanism. We speculate that MB and MZ enhance MPTP active metabolite (methyl-4-phenylpyridine ion, MPP+) toxicity by activating NF-κB. The activation of NF-κB was observed using Western blot analysis and NF-κB response element driven Luciferase reporter assay. Western blot data demonstrated the nuclear translocation of NF-κB p65 and the degradation of IkBα after MB and MZ 4-h treatments. Results of NF-κB response element luciferase reporter assay confirmed that MB and MZ activated NF-κB. The NF-κB inhibitor (SN50) was also shown to alleviate cytotoxicity induced by co-treatment of MB or MZ and MPP+. This study demonstrates that activation of NF-κB is responsible for the potentiated toxic effect of MB and MZ on MPP+ induced cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad I, Kumar A, Shukla S, Prasad Pandey H, Singh C (2008) The involvement of nitric oxide in maneb- and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes. Free Radic Res 42:849–862

    Article  PubMed  CAS  Google Scholar 

  • Aoki E, Yano R, Yokoyama H, Kato H, Araki T (2009) Role of nuclear transcription factor kappa B (NF-kappa B) for MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced apoptosis in nigral neurons of mice. Exp Mol Pathol 86:57–64

    Article  PubMed  CAS  Google Scholar 

  • Bachurin SO, Shevtzova EP, Lermontov NN, Serkova TP, Ramsay RR (1996) The effect of dithiocarbamates on neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and on mitochondrial respiration chain. Neurotoxicology 17:897–903

    PubMed  CAS  Google Scholar 

  • Baichwal VR, Baeuerle PA (1997) Activate NF-kappa B or die? Curr Biol 7:R94–R96

    Article  PubMed  CAS  Google Scholar 

  • Barlow BK, Lee DW, Cory-Slechta DA, Opanashuk LA (2005) Modulation of antioxidant defense systems by the environmental pesticide maneb in dopaminergic cells. Neurotoxicology 26:63–75

    Article  PubMed  CAS  Google Scholar 

  • Bowman AB, Kwakye GF, Hernandez EH, Aschner M (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25:191–203

    Article  PubMed  CAS  Google Scholar 

  • Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF (1993) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 120:89–94

    Article  PubMed  CAS  Google Scholar 

  • Cersosimo MG, Koller WC (2006) The diagnosis of manganese-induced Parkinsonism. Neurotoxicology 27:340–346

    Article  PubMed  CAS  Google Scholar 

  • Cicchetti F, Drouin-Ouellet J, Gross RE (2009) Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci 30:475–483

    Article  PubMed  CAS  Google Scholar 

  • Daniels AJ, Abarca J (1991) Effect of intranigral Mn2+ on striatal and nigral synthesis and levels of dopamine and cofactor. Neurotoxicol Teratol 13:483–487

    Article  PubMed  CAS  Google Scholar 

  • Domico LM, Zeevalk GD, Bernard LP, Cooper KR (2006) Acute neurotoxic effects of mancozeb and maneb in mesencephalic neuronal cultures are associated with mitochondrial dysfunction. Neurotoxicology 27:816–825

    Article  PubMed  CAS  Google Scholar 

  • Domico LM, Cooper KR, Bernard LP, Zeevalk GD (2007) Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells. Neurotoxicology 28:1079–1091

    Article  PubMed  CAS  Google Scholar 

  • Farina M, Avila DS, da Rocha JB, Aschner M (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62:575–594

    Article  PubMed  CAS  Google Scholar 

  • Ferraz HB, Bertolucci PH, Pereira JS, Lima JG, Andrade LA (1988) Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication. Neurology 38:550–553

    Article  PubMed  CAS  Google Scholar 

  • Florence TM, Stauber JL (1989) Manganese catalysis of dopamine oxidation. Sci Total Environ 78:233–240

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K (2007) Selective inhibition of NF-kappa B activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 104:18754–18759

    Article  PubMed  CAS  Google Scholar 

  • Ghribi O, Heman MM, Pramoonjago P, Savory J (2003) MPP+ induces the endoplasmic reticulum stress response in rabbit brain involving activation of the ATP-6 and NF-kappaB signaling pathways. J Neuropathol Exp Neurol 62:1144–1153

    PubMed  CAS  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX et al (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20:239–247

    PubMed  CAS  Google Scholar 

  • Gueorguiev VD, Cheng SY, Sabban EL (2006) Prolonged activation of cAMP-response element-binding protein and ATP-2 needed for nicotine-triggered elevation tyrosine hydroxylase gene transcription in PC12 cells. J Biol Chem 281:10188–10195

    Article  PubMed  CAS  Google Scholar 

  • Guilarte TR (2010) Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa E, Takeshige K, Oishi T, Murai Y, Minakami S (1990) 1-Methyl-4-phenylpyridinium (MPP+) induces NADH dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 170:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Hoffman L, Hardej D (2012) Ethylene bisdithiocarbamate pesticides cause cytotoxicity in transformed and normal human colon cells. Environ Toxicol Pharmacol 34:556–573

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 94:7531–7536

    Article  PubMed  CAS  Google Scholar 

  • Kienzl E, Puchinger L, Jellinger K, Linert W, Stachelberger H, Jameson RF (1995) The role of transition metals in the pathogenesis of Parkinson’s disease. J Neurol Sci 134(Suppl):69–78

    Article  PubMed  Google Scholar 

  • Kim Y, Kim JW, Ito K, Lim HS, Cheong HK et al (1999) Idiopathic Parkinsonism with superimposed manganese exposure: utility of positron emission tomography. Neurotoxicology 20:249–252

    PubMed  CAS  Google Scholar 

  • Lezoualch F, Sagara Y, Holsboer F, Behl C (1998) High constitutive NF-kappa B activity mediates resistance to oxidative stress in neuronal cells. J Neurosci 18:3224–3232

    CAS  Google Scholar 

  • Lipton SA (1997) Janus faces of NF-kappa B: neurodestruction versus neuroprotection. Nat Med 2:20–22

    Article  Google Scholar 

  • Masqras I, Carrera S, de Verdier PJ, Brennan P, Malid A, Makhtar W, Tulchinsky E, Jones GD, Roninson IB, Macip S (2012) Reactive oxygen species and mitochondrial sensitivity to oxidative stress determine induction of cancer cell death by p21. J Biol Chem 287:9845–9854

    Article  Google Scholar 

  • Mattson MP, Camandola S (2001) NF-kappa B in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107:247–254

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NF-kappa B protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 49:681–697

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Culmsee C, Yu Z, Camandola S (2000) Roles of nuclear factor kappa B in neuronal survival and plasticity. J Neurochem 74:443–456

    Article  PubMed  CAS  Google Scholar 

  • McCrew DM, Irwin I, Langston JW (2000) Ethylenebisdithiocarbamate enhances MPTP-induced striatal dopamine depletion in mice. Neurotoxicology 21:309–312

    Google Scholar 

  • Meco G, Bonifati V, Vanacore N, Fabrizio E (1994) Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bis-dithiocarbamate). Scand J Work Environ Health 20:301–305

    Article  PubMed  CAS  Google Scholar 

  • Monte D, Lavasani M, Manning-Bog A (2002) Environmental factors in Parkinson’s disease. Neurotoxicology 23:487–502

    Article  PubMed  Google Scholar 

  • Montgomery EB Jr (1995) Heavy metals and the etiology of Parkinson’s disease and other movement disorders. Toxicology 97:3–9

    Article  PubMed  CAS  Google Scholar 

  • Morato GS, Lemos T, Takahashi RN (1989) Acute exposure to maneb alters some behavioral functions in the mouse. Neurotoxicol Teratol 11:421–425

    Article  PubMed  CAS  Google Scholar 

  • Muroyama A, Fujita A, Lv C, Kobayashi S, Fukuyama Y, Mitsumoto Y (2012) Magnolol protects against MPTP/MPP(+)-induced toxicity via inhibition of oxidative stress in vivo models of Parkinson’s disease. Parkinsons Dis 2012:985157. doi:10.1155/2012/985157

    PubMed  Google Scholar 

  • Nakai M, Mori A, Watanabe A, Mitsumoto Y (2003) 1-Methyl-4-phenylpyridinium (MPP+) decreases mitochondrial oxidation-reduction (REDOX) activity and membrane potential (ΔΨm) in rat striatum. Exp Neurol 179:103–110

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW (2004) Manganese-induced Parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 1012:209–223

    Article  PubMed  CAS  Google Scholar 

  • Panet H, Barzilai A, Daily D, Melamed E, Offen D (2001) Activation of nuclear transcription factor kappa B (NF-kappaB) is essential for dopamine-induced apoptosis in PC12 cells. J Neurochem 77:391–398

    Article  PubMed  CAS  Google Scholar 

  • Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  • Prohaska JR (1987) Functions of trance elements in brain metabolism. Physiol Rev 67:858–901

    PubMed  CAS  Google Scholar 

  • Ramesh GT, Ghosh D, Gunasekar PG (2002) Activation of early signaling transcription factor, NF-kappaB following low-level manganese exposure. Toxicol Lett 136:151–158

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (2007) Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ 14:1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  PubMed  CAS  Google Scholar 

  • Scharf B, Trombetta LD (2007) The effects of the wood preservative copper dimethyldithiocarbamate in the hippocampus of maternal and newborn Lon-Evans rats. Toxicol Lett 174:117–124

    Article  PubMed  CAS  Google Scholar 

  • Shen XM, Dryhurst G (1998) Iron- and manganese-catalyzed autoxidation of dopamine in the presence of l-cysteine: possible insights into iron- and manganese-mediated dopaminergic neurotoxicity. Chem Res Toxicol 11:824–837

    Article  PubMed  CAS  Google Scholar 

  • Soleo L, Defazio G, Scarselli R, Zefferino R, Livrea P, Foa V (1996) Toxicity of fungicides containing ethylene-bis-dithiocarbamate in serumless dissociated mesencephalic-striatal primary coculture. Arch Toxicol 70:678–682

    Article  PubMed  CAS  Google Scholar 

  • Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 749:44–52

    Article  PubMed  CAS  Google Scholar 

  • Takahashi RN, Rogerio R, Zanin M (1989) Maneb enhances MPTP neurotoxicity in mice. Res Commun Chem Pathol Pharmacol 66:167–170

    PubMed  CAS  Google Scholar 

  • Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA (2000a) Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson’s disease? Brain Res 873:225–234

    Article  PubMed  CAS  Google Scholar 

  • Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA (2000b) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci 20:9207–9214

    PubMed  CAS  Google Scholar 

  • Tsang MM, Trombetta LD (2007) The protective role of chelators and antioxidants on mancozeb-induced toxicity in rat hippocampal astrocytes. Toxicol Ind Health 23:459–470

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi Y (2012) Environmental-genetic interactions in the pathogenesis of Parkinson’s disease. Exp Neurobiol 21:123–128

    Article  PubMed  Google Scholar 

  • USGS.gov (2009) http://minerals.usgs.gov/minerals/pubs/mcs/2009/mcs2009.pdf

  • Vaccari A, Saba P, Mocci I, Ruiu S (1999) Dithiocarbamate pesticides affect glutamate transport in brain synaptic vesicles. J Pharmacol Exp Ther 228:1–5

    Google Scholar 

  • van der Mark M, Brouwer M, Kromhout H, Nijssen P, Huss A, Vermeulen R (2012) Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results. Environ Health Perspect 120:340–347

    Article  PubMed  Google Scholar 

  • Walters TL, Irwin I, Delfani K, Langston JW, Janson AM (1999) Diethyldithiocarbamate causes nigral cell loss and dopamine depletion with nontoxic doses of MPTP. Exp Neurol 156:62–70

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Gao W, Dou S, Cheng B (2013) Simvastatin inhibited the apoptosis of PC12 cells induced by 1-methyl-4-phenylpyridinium ion via inhibiting reactive oxygen species production. Cell Mol Neurobiol 33:69–73

    Article  PubMed  Google Scholar 

  • Yurekli VA, Gurler S, Naziroqlu M, Uquz AC, Koyuncuoqlu HR (2013) Zonisamide attenuates MPP+-induced oxidative toxicity through modulation of Ca2+ signaling and caspase-3 activity in neuronal PC12 cells. Cell Mol Neurobiol 33:205–212

    Article  PubMed  Google Scholar 

  • Zhang J, Fitsanakis VA, Gu G, Jing D, Ao M, Amarnath V, Montine TJ (2003) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84:336–346

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Cao R, Cai T, Aschner M, Zhao F, Yao T, Chen Y, Cao Z, Luo W, Chen J (2013) The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration. Neurotox Res. doi:10.1007/s12640-013-9392-5

  • Zhao F, Zhang JB, Cai TJ, Liu XQ, Liu MC, Ke T, Chen JY, Luo WJ (2012) Manganese induces p21 expression in PC12 cells at the transcriptional level. Neuroscience 215:184–195

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Shie FS, Piccardo P, MOntine TJ, Zhang J (2004) Proteasomal inhibition induced by manganese ethylene-bis-dithiocarbamate: relevance to Parkinson’s disease. Neuroscience 128:281–291

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank John Jay Start up fund and PSC CUNY for supporting this project. We also thank Program for Research Initiatives for Science Majors (PRISM) at John Jay College. PRISM is funded by the Title V, HSI-STEM and MSEIP programs within the US Department of Education; the PAESMEM program through the National Science Foundation; and New York State’s Graduate Research and Technology Initiative.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Yuan Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, CA., Lin, Y., Maynard, A. et al. Involvement of NF Kappa B in Potentiated Effect of Mn-containing Dithiocarbamates on MPP+ Induced Cell Death. Cell Mol Neurobiol 33, 815–823 (2013). https://doi.org/10.1007/s10571-013-9948-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9948-1

Keywords

Navigation