Skip to main content

Advertisement

Log in

Long-Term Treatment with Losartan Attenuates Seizure Activity and Neuronal Damage Without Affecting Behavioral Changes in a Model of Co-morbid Hypertension and Epilepsy

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Over the last 10 years, accumulated experimental and clinical evidence has supported the idea that AT1 receptor subtype is involved in epilepsy. Recently, we have shown that the selective AT1 receptor antagonist losartan attenuates epileptogenesis and exerts neuroprotection in the CA1 area of the hippocampus in epileptic Wistar rats. This study aimed to verify the efficacy of long-term treatment with losartan (10 mg/kg) after kainate-induced status epilepticus (SE) on seizure activity, behavioral and biochemical changes, and neuronal damage in a model of co-morbid hypertension and epilepsy. Spontaneous seizures were video- and EEG-monitored in spontaneously hypertensive rats (SHRs) for a 16-week period after SE. The behavior was analyzed by open field, elevated plus maze, sugar preference test, and forced swim test. The levels of serotonin in the hippocampus and neuronal loss were estimated by HPLC and hematoxylin and eosin staining, respectively. The AT1 receptor antagonism delayed the onset of seizures and alleviated their frequency and duration during and after discontinuation of treatment. Losartan showed neuroprotection mostly in the CA3 area of the hippocampus and the septo-temporal hilus of the dentate gyrus in SHRs. However, the AT1 receptor antagonist did not exert a substantial influence on concomitant with epilepsy behavioral changes and decreased 5-HT levels in the hippocampus. Our results suggest that the antihypertensive therapy with an AT1 receptor blocker might be effective against seizure activity and neuronal damage in a co-morbid hypertension and epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allen AM, Mbeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY, Mendelsohn FAO (1998) Angiotensin receptors in the nervous system. Brain Res Bull 47:17–28

    Article  CAS  PubMed  Google Scholar 

  • Argañaraz GA, Konno AC, Perosa SR, Santiago JF, Boim MA, Vidotti DB, Varella PP, Costa LG, Canzian M, Porcionatto MA, Yacubian EM, Sakamoto AC, Carrete H Jr, Centeno RS, Amado D, Cavalheiro EA, Jnaj JA, Mazzacoratti MG (2008) The renin-angiotensin system is upregulated in the cortex and hippocampus of patients with temporal lobe epilepsy related to mesial temporal sclerosis. Epilepsia 49:1348–1357

    Article  PubMed  Google Scholar 

  • Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L, Heinemann U, Kaufer D, Friedman A (2014) Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann Neurol 75:864–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beig MI, Chandra R, Talwar A, Fahim M, Katyal A (2009) Epileptic seizure-induced hypertension and its prevention by calcium channel blockers: a real-time study in conscious telemetered rats. Can J Physiol Pharmacol 87:572–580

    Article  CAS  PubMed  Google Scholar 

  • Braszko JJ, Karwowska-Polecka W, Halicka D, Gard PR (2003) Captopril and enalapril improve cognition and depressed mood in hypertensive patients. J Basic Clin Physiol Pharmacol 14:323–343

    Article  CAS  PubMed  Google Scholar 

  • Cornford EM, Oldendorf WH (1986) Epilepsy and the blood-brain barrier. Adv Neurol 44:787–812

    CAS  PubMed  Google Scholar 

  • De Bruin NM, Kiliaan AJ, De Wilde MC, Broersen LM (2003) Combined uridine and choline administration improves cognitive deficits in spontaneously hypertensive rats. Neurobiol Learn Mem 80:63–79

    Article  PubMed  Google Scholar 

  • De Gasparo M, Husain A, Alexander W, Catt KJ, Chiu AT, Drew M, Goodfriend T, Harding JW, Inagami T, Timmermans PB (1995) Proposed uptade of angiotensin receptor nomenclature. Hypertension 25:924–939

    Article  CAS  PubMed  Google Scholar 

  • Gard PR, Mandy A, Sutcliffe MA (1999) Evidence of a possible role of altered angiotensin function in the treatment, but not etiology, of depression. Biol Psychiatry 45:1030–1034

    Article  CAS  PubMed  Google Scholar 

  • Gattu M, Terry AV Jr, Pauly JR, Buccafusco JJ (1997) Cognitive impairment in spontaneously hypertensive rats: role of central nicotinic receptors. Part II. Brain Res 771:104–114

    Article  CAS  PubMed  Google Scholar 

  • Gentsch C, Lichtsteiner M, Feer H (1987) Open field and elevated plus-maze: a behavioural comparison between spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats and the effects of chlordiazepoxide. Behav Brain Res 25:101–107

    Article  CAS  PubMed  Google Scholar 

  • Georgiev VP, Lazarova MB, Kambourova TS (1996) Effects of non-peptide angiotensin II-receptor antagonists on pentylenetetrazol kindling in mice. Neuropeptides 30:401–404

    Article  CAS  PubMed  Google Scholar 

  • Germain L, Chouinard G (1988) Treatment of recurrent unipolar major depression with captopril. Biol Psychiatry 23:637–641

    Article  CAS  PubMed  Google Scholar 

  • Germain L, Chouinard G (1989) Captopril treatment of major depression with serial measurements of blood cortisol concentrations. Biol Psychiatry 25:489–493

    Article  CAS  PubMed  Google Scholar 

  • Goel R, Goel A, Kumar Y (2012) Hypertension: a major factor for epilepsy. Carvedilol potentiates gabapentin effect. LAP Lambert Acad Publ Germany, Saarbrùcken, p 84

    Google Scholar 

  • Gorter JA, van Vliet EA, Aronica E (2015) Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav 49:13–16

    Article  PubMed  Google Scholar 

  • Gouveia TL, Frangiotti MI, de Brito JM, de Castro Neto EF, Sakata MM, Febba AC, Casarini DE, Amado D, Cavalheiro EA, Almeida SS, Manchini MT, Araújo RC, Silva JA Jr, Naffah-Mazzacoratti Mda G (2012) The levels of renin-angiotensin related components are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Neurochem Int 61:54–62

  • Hellier JL, Partylo PR, Buckmaster PS, Dudek FE (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 31:73–84

    Article  CAS  PubMed  Google Scholar 

  • Ivanova N, Pechlivanova D, Atanasova D, Mitreva R, Lazarov N, Stoynev Al, Tchekalarova J (2015) Long-term intracerebroventricular infusion of angiotensin II after kainate-induced status epilepticus: Effects on epileptogenesis, brain damage and diurnal behavioral changes. Epilepsy Behav 51:1–12

  • Johansson BB (1981) Indomethacin and cerebrovascular permeability to albumin in acute hypertension and cerebral embolism in the rat. Exp Brain Res 42:331–336

    CAS  PubMed  Google Scholar 

  • Kawano Y, Yoshida K, Matsuoka H, Omae T (1994) Chronic effects of central and systemic administration of losartan on blood pressure and baroreceptor reflex in spontaneously hypertensive rats. Am J Hypertens 7:536–542

    CAS  PubMed  Google Scholar 

  • Kaya M, Kalayci R, Küçük M, Arican N, Elmas I, Kudat H, Korkut F (2003) Effect of losartan on the blood-brain barrier permeability in diabetic hypertensive rats. Life Sci 73:3235–3244

    Article  CAS  PubMed  Google Scholar 

  • Kucuk M, Kaya M, Kalayci R, Cimen V, Kudat H, Arican N, Elmas I, Korkut F (2002) Effects of losartan on the blood-brain barrier permeability in long-term nitric oxide blockade-induced hypertensive rats. Life Sci 71:937–946

    Article  CAS  PubMed  Google Scholar 

  • Kulikov A, Aguerre S, Berton O, Ramos A, Mormede P, Chaouloff F (1997) Central serotonergic systems in the spontaneously hypertensive and Lewis rat strains that differ in the elevated plus-maze test of anxiety. J Pharmacol Exp Ther 281:775–784

    CAS  PubMed  Google Scholar 

  • Linthorst AC, van Giersbergen PL, Gras M, Versteeg DH, de Jong W (1994) The nigrostriatal dopamine system: role in the development of hypertension in spontaneously hypertensive rats. Brain Res 639:261–268

    Article  CAS  PubMed  Google Scholar 

  • Łukawski K, Janowska A, Jakubus T, Tochman-Gawda A, St Czuczwar (2010) Angiotensin AT1 receptor antagonists enhance the anticonvulsant action of valproate in the mouse model of maximal electroshock. Eur J Pharmacol 640:172–177

    Article  PubMed  Google Scholar 

  • Łukawski K, Janowska A, Jakubus T, Czuczwar SJ (2014) Interactions between angiotensin AT1 receptor antagonists and second-generation antiepileptic drugs in the test of maximal electroshock. Fundam Clin Pharmacol 28:277–283

    Article  PubMed  Google Scholar 

  • Nakamura K, Shirane M, Koshikawa N (2001) Site-specific activation of dopamine and serotonin transmission by aniracetam in the mesolcorticolimbic pathway of rats. Brain Res 897:82–92

    Article  CAS  PubMed  Google Scholar 

  • Nayak V, Patil PA (2008) Antidepressant activity of fosinopril, ramipril and losartan, but not of lisinopril in depressive paradigms of albino rats and mice. Indian J Exp Biol 46:180–184

    CAS  PubMed  Google Scholar 

  • Ndode-Ekane XE, Hayward N, Gröhn O, Pitkänen A (2010) Vascular changes in epilepsy: functional consequences and association with network plasticity in pilocarpine-induced experimental epilepsy. Neuroscience 166:312–332

    Article  CAS  PubMed  Google Scholar 

  • Nishimura Y, Ito T, Saavedra JM (2000a) Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 31:2478–2486

    Article  CAS  PubMed  Google Scholar 

  • Nishimura Y, Ito T, Hoe K, Saavedra JM (2000b) Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors. Brain Res 871:29–38

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    Article  CAS  PubMed  Google Scholar 

  • Pechlivanova D, Markova P, Stoynev A (2010) Effect of the AT1 receptor antagonist losartan on diurnal variation in pain threshold in spontaneously hypertensive rats. Methods Find Exp Clin Pharmacol 32:663–668

    Article  CAS  PubMed  Google Scholar 

  • Pedreañez A, Arcaya JL, Carrizo E, Rincón J, Viera N, Peña C, Vargas R, Mosquera J (2011) Experimental depression induces renal oxidative stress in rats. Physiol Behav 104:1002–1009

    Article  PubMed  Google Scholar 

  • Pereira M, Becari C, Oliviera J, Salgadoc O, Garcia-Cairasco N, Costa-Net C (2010) Inhibition of the renin–angiotensin system prevents seizures in a rat model of epilepsy. Clin Sci 119:477–482

    Article  CAS  PubMed  Google Scholar 

  • Petkova Z, Tchekalarova J, Pechlivanova D, Moyanova S, Kortenska L, Mitreva R, Popov D, Markova P, Lozanov V, Atanasova D, Lazarov N, Stoynev A (2014) Treatment with melatonin after status epilepticus attenuates seizure activity and neuronal damage but does not prevent the disturbance in diurnal rhythms and behavioral alterations in spontaneously hypertensive rats in kainate model of temporal lobe epilepsy. Epilepsy Behav 31:198–208

    Article  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M (1979) Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 57:201–210

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin Neurophysiol 32:281–294

  • Raizada MK, Sumners C, Lu d (1993) Angiotensin II type 1 receptor mRNA levels in the brains of normotensive and spontaneously hypertensive rats. J Neurochem 60:1949–1952

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Kangerski AL, Basso PF, Da Silva Santos JE, Assreuy J, Vendruscolo LF, Takahashi RN (2002) Evaluation of Lewis and SHR rat strains as a genetic model for the study of anxiety and pain. Behav Brain Res 129:113–123

    Article  PubMed  Google Scholar 

  • Ribeiro-Oliveira A Jr, Nogueira AI, Pereira RM, Boas WW, Dos Santos RA, Simões e Silva AC (2008) The renin-angiotensin system and diabetes: an update. Vasc Health Risk Manag 4(4):787–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sagvolden T, Johansen EB, Aase H, Russell VA, Okamoto K, Aoki K (2006) Development of a strain pilocarpine-induced limbic seizures in rats. J Neurochem 98:1100–1113

    Article  Google Scholar 

  • Scorza FA, Arida RM, De Albuquerque M, Cavalheiro EA (2006) Epilepsy and hypertension. J Epilepsy Clin Neurophysiol 12:219–224

    Article  Google Scholar 

  • Srinivasan J, Suresh B, Ramanathan M (2003) Differential anxiolytic effect of enalapril and losartan in normotensive and renal hypertensive rats. Physiol Behav 78:585–591

    Article  CAS  PubMed  Google Scholar 

  • Stragier B, Clinckers R, Meurs A, De Bundel D, Sarre S, Ebinger G, Michotte Y, Smolders I (2006) Involvement of the somatostatin-2 receptor in the anticonvulsant effect of angiotensin IV against pilocarpine-induced limbic seizures in rats. J Neurochem 98:1100–1113

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Wu H, Yu X, Zhang G, Zhang R, Zhan S, Wang H, Bu N, Ma X, Li Y (2015) Angiotensin II and its receptor in activated microglia enhanced neuronal loss and cognitive impairment following pilocarpine-induced status epilepticus. Mol Cell Neurosci 65:58–67. doi:10.1016/j.mcn.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  • Tchekalarova J, Georgiev V (1999) Adenosine-angiotensin II interactions in pentylenetetrazol seizure threshold in mice. J Physiol (Paris) 93:191–197

    Article  CAS  Google Scholar 

  • Tchekalarova J, Georgiev V (2005) Angiotensin peptides modulatory system: how is it implicated in the control of seizure susceptibility? Rev Life Sci 76:955–970

    Article  CAS  Google Scholar 

  • Tchekalarova J, Pechlivanova D, Itzev D, Lazarov N, Markova P, Stoynev A (2010) Diurnal rhythms of spontaneous recurrent seizures and behavioural alterations of Wistar and spontaneously hypertensive rats in kainate model of epilepsy. Epilepsy Behav 17:23–32

    Article  PubMed  Google Scholar 

  • Tchekalarova J, Pechlivanova D, Ts Atanasova, Markova P, Lozanov V, Stoynev A (2011) Diurnal variations of depressive-like behavior of Wistar and spontaneously hypertensive rats in kainate model of temporal lobe epilepsy. Epilepsy Behav 20:277–285

    Article  PubMed  Google Scholar 

  • Tchekalarova J, Ivanova N, Pechlivanova D, Atanasova D, Lazarov N, Kortenska L, Mitreva R, Lozanov V, Stoynev A (2014a) Antiepileptogenic and neuroprotective effect of losartan in kainate model of temporal lobe epilepsy. Pharmacol Biochem Behav 127:27–36

    Article  CAS  PubMed  Google Scholar 

  • Tchekalarova J, Ivanova N, Pechlivanova D, Illieva K, Atanasova M (2014b) Strain-dependent effects of chronically infused losartan against kainic acid induced seizures, oxidative stress and heat shock protein 72 expression. Cell Mol Neurobol 34:133–142

    Article  CAS  Google Scholar 

  • Tchekalarova J, Shishmanova M, Atanasova D, Stefanova M, Alova L, Lazarov N, Georgieva K (2015) Effect of endurance training on seizure susceptibility and behavioral changes after kainate-induced status epilepticus in spontaneously hypertensive rats. Brain Res 1625:39–53

  • Thomas WG, Mendelsohn FA (2003) Angiotensin receptors: form and function and distribution. Int J Biochem Cell Biol 35:774–779

    Article  CAS  PubMed  Google Scholar 

  • van Vliet EA, da Costa Araújo S, Redeker S, van Schaik R, Aronica E, Gorter JA (2007) Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 130:521–534

    Article  PubMed  Google Scholar 

  • Vijayapandi P, Nagappa AN (2005) Biphasic effects of losartan potassium on immobility in mice. Yakugaku Zasshi. (The Pharm Soc Japan) 125:653–657

    Article  CAS  Google Scholar 

  • Wright JW, Harding JW (2011) Brain renin-angiotensin system- a new look at an old system. Prog Neurobiol 95:49–67

    Article  CAS  PubMed  Google Scholar 

  • Wright JW, Yamamoto BJ, Harding JW (2008) Angiotensin receptor subtype mediated physiologies and behaviors: new discoveries and clinical targets. Prog Neurobiol 84:157–181

    Article  CAS  PubMed  Google Scholar 

  • Wyss JM, Chambless BD, Kadish I, van Groen T (2000) Age-related decline in water maze learning and memory in rats: strain differences. Neurobiol Aging 21:671–681

    Article  CAS  PubMed  Google Scholar 

  • Ye S, Zhong H, Duong VN, Campese VM (2002) Losartan reduces central and peripheral sympathetic nerve activity in a rat model of neurogenic hypertension. Hypertension 39:1101–1106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by contract No. 30/2011 and National Science Fund (Research Grant # DTK 02/56 2009-2012). The authors thank Sabina Mitova, Medical Department, Medical University, Sofia for her expert technical assistance with the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana D. Tchekalarova.

Ethics declarations

Conflicts of interest

None of the authors has any conflict of interest concerning this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchekalarova, J.D., Ivanova, N., Atanasova, D. et al. Long-Term Treatment with Losartan Attenuates Seizure Activity and Neuronal Damage Without Affecting Behavioral Changes in a Model of Co-morbid Hypertension and Epilepsy. Cell Mol Neurobiol 36, 927–941 (2016). https://doi.org/10.1007/s10571-015-0278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0278-3

Keywords

Navigation