Skip to main content

Advertisement

Log in

FK506 Attenuates the Inflammation in Rat Spinal Cord Injury by Inhibiting the Activation of NF-κB in Microglia Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

FK-506 (Tacrolimus) is a very commonly used immunomodulatory agent that plays important roles in modulating the calcium-dependent phosphoserine–phosphothreonine protein phosphatase calcineurin and thus inhibits calcineurin-mediated secondary neuronal damage. The biological function of FK-506 in the spinal cord has not been fully elucidated. To clarify the anti-inflammatory action of FK-506 in spinal cord injury (SCI), we performed an acute spinal cord contusion injury model in adult rats and hypoxia-treated primary spinal cord microglia cultures. This work studied the activation of NF-κB and proinflammatory cytokine (TNF-a, IL-1b, and IL-6) expression. ELISA and q-PCR analysis revealed that TNF-a, IL-1b, and IL-6 levels significantly increased 3 days after spinal cord contusion and decreased after 14 days, accompanied by the increased activation of NF-κB. This increase was reversed by an FK-506 treatment. Double immunofluorescence labeling suggested that NF-κB activation was especially prominent in microglia. Immunohistochemistry confirmed no alteration in the number of microglia. Moreover, the results in hypoxia-treated primary spinal cord microglia confirmed the effect of FK-506 on TNF-a, IL-1b, and IL-6 expression and NF-κB activation. These findings suggest that FK-506 may be involved in microglial activation after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akira S, Hirano T, Taga T, Kishimoto T (1990) Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J 4:2860–2867

    CAS  PubMed  Google Scholar 

  • Bareyre FM, Schwab ME (2003) Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 26:555–563

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    Article  CAS  PubMed  Google Scholar 

  • Bartholdi D, Schwab ME (1997) Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 9:1422–1438

    Article  CAS  PubMed  Google Scholar 

  • Baskar Jesudasan SJ, Todd KG, Winship IR (2014) Reduced inflammatory phenotype in microglia derived from neonatal rat spinal cord versus brain. PLoS One 9:e99443

    Article  PubMed  PubMed Central  Google Scholar 

  • Bethea JR, Dietrich WD (2002) Targeting the host inflammatory response in traumatic spinal cord injury. Curr Opin Neurol 15:355–360

    Article  PubMed  Google Scholar 

  • Bethea JR, Castro M, Keane RW, Lee TT, Dietrich WD, Yezierski RP (1998) Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci 18:3251–3260

    CAS  PubMed  Google Scholar 

  • Carlson GD, Gorden C (2002) Current developments in spinal cord injury research. Spine J 2:116–128

    Article  PubMed  Google Scholar 

  • Chengke L, Weiwei L, Xiyang W, Ping W, Xiaoyang P, Zhengquan X, Hao Z, Penghui Z, Wei P (2013) Effect of infliximab combined with methylprednisolone on expressions of NF-κB, TRADD, and FADD in rat acute spinal cord injury. Spine 3814:E861–E869

    Article  Google Scholar 

  • Diaz-Ruiz A, Vergara P, Perez-Severiano F, Segovia J, Guizar-Sahagun G, Ibarra A, Rios C (2005) Cyclosporin-A inhibits constitutive nitric oxide synthase activity and neuronal and endothelial nitric oxide synthase expressions after spinal cord injury in rats. Neurochem Res 30:245–251

    Article  CAS  PubMed  Google Scholar 

  • Du S, Hiramatsu N, Hayakawa K, Kasai A, Okamura M, Huang T, Yao J, Takeda M, Araki I, Sawada N, Paton AW, Paton JC, Kitamura M (2009) Suppression of NF-kappaB by cyclosporin a and tacrolimus (FK506) via induction of the C/EBP family: implication for unfolded protein response. J Immunol 182:7201–7211

    Article  CAS  PubMed  Google Scholar 

  • Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  CAS  PubMed  Google Scholar 

  • Goldshmit Y, Frisca F, Pinto AR, Pébay A, Tang JK, Siegel AL, Kaslin J, Currie PD (2014) Fgf2 improves functional recovery-decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury. Brain Behav 4:187–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Green HF, Nolan YM (2012) GSK-3 mediates the release of IL-1beta, TNFalpha and IL-10 from cortical glia. Neurochem Int 61:666–671

    Article  CAS  PubMed  Google Scholar 

  • Hu JZ, Huang JH, Xiao ZM, Li JH, Li XM, Lu HB (2013) Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation. J Neurol Sci 324:94–99

    Article  CAS  PubMed  Google Scholar 

  • Hua K, Schindler MK, McQuail JA, Forbes ME, Riddle DR (2012) Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats. PLoS One 7:e52728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  • Lai AY, Todd KG (2006) Hypoxia-activated microglial mediators of neuronal survival are differentially regulated by tetracyclines. Glia 53:809–816

    Article  PubMed  Google Scholar 

  • Lai AY, Todd KG (2008) Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury. Glia 56:259–270

    Article  PubMed  Google Scholar 

  • Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, Bluethmann H, Faergeman NJ, Meldgaard M, Deierborg T, Finsen B (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29:131913–131930

    Article  Google Scholar 

  • Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  CAS  PubMed  Google Scholar 

  • Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89:1092–1100

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ni B, Cao Z, Liu Y (2013) Glycyrrhizin protects spinal cord and reduces inflammation in spinal cord ischemia-reperfusion injury. Int J Neurosci 123:745–751

    Article  CAS  PubMed  Google Scholar 

  • Nikodemova M, Watters JJ (2012) Efficient isolation of live microglia with preserved phenotypes from adult mouse brain. J Neuroinflammation 9:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan F, Chen A, Guo F, Zhu C, Tao F (2008) Effect of FK506 on expression of hepatocyte growth factor in murine spinal cord following peripheral nerve injury. J Huazhong Univ Sci Technolog Med Sci 28:159–162

    Article  CAS  PubMed  Google Scholar 

  • Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15:415–436

    Article  PubMed  Google Scholar 

  • Saganová K, Gálik J, Blaško J, Korimová A, Račeková E, Vanický I (2012) Immunosuppressant FK506: focusing on neuroprotective effects following brain and spinal cord injury. Life Sci 91:77–82

    Article  PubMed  Google Scholar 

  • Smith PD, Puskas F, Meng X, Lee JH, Cleveland JC Jr, Weyant MJ, Fullerton DA, Reece TB (2012) The evolution of chemokine release supports a bimodal mechanism of spinal cord ischemia and reperfusion injury. Circulation 126(11 Suppl 1):S110–S117

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sticozzi C, Belmonte G, Meini A, Carbotti P, Grasso G, Palmi M (2013) IL-1β induces GFAP expression in vitro and in vivo and protects neurons from traumatic injury-associated apoptosis in rat brain striatum via NFκB/Ca2+-calmodulin/ERK mitogen-activated protein kinase signaling pathway. Neuroscience 252:367–383

    Article  CAS  PubMed  Google Scholar 

  • Su L, Ji J, Bian J, Fu Y, Ge Y, Yuan Z (2012) Tacrolimus (FK506) prevents early retinal neovascularization in streptozotocin-induced diabetic mice. Int Immunopharmacol 14:606–612

    Article  CAS  PubMed  Google Scholar 

  • Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–643

    Article  CAS  PubMed  Google Scholar 

  • Vafadari R, Kraaijeveld R, Weimar W, Baan CC (2013) Tacrolimus inhibits NF-κB activation in peripheral human T cells. PLoS One. 8(4):e60784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YF, Zu JN, Li J, Chen C, Xi CY, Yan JL (2014) Curcumin promotes the spinal cord repair via inhibition of glial scar formation and inflammation. Neurosci Lett 560:51–56

    Article  CAS  PubMed  Google Scholar 

  • Wei HY, Ma X (2014) Tamoxifen reduces infiltration of inflammatory cells, apoptosis and inhibits IKK/NF-κB pathway after spinal cord injury in rats. Neurol Sci 35(11):1763–1768. doi:10.1007/s10072-014-1828-z

    Article  PubMed  Google Scholar 

  • Werry EL, Liu GJ, Lovelace MD, Nagarajah R, Hickie IB, Bennett MR (2011) Lipopolysaccharide-stimulated interleukin-10 release from neonatal spinal cord microglia is potentiated by glutamate. Neuroscience 175:93–103

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Jones NR, Blumbergs PC, Van Den Heuvel C, Moore EJ, Manavis J, Sarvestani GT, Ghabriel MN (2005) Severity-dependent expression of pro-inflammatory cytokines in traumatic spinal cord injury in the rat. J Clin Neurosci 12:276–284

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhao TZ, Zou YJ, Zhang JH, Feng H (2014) Hypoxia induces autophagic cell death through hypoxia-inducible factor 1α in microglia. PLoS One 9:e96509

    Article  PubMed  PubMed Central  Google Scholar 

  • Yenari MA, Kauppinen TM, Swanson RA (2010) Microglial activation in stroke: therapeutic targets. Neurother J Am Soc Exp Neuro Ther 7:378–391

    CAS  Google Scholar 

  • Yin X, Yin Y, Cao FL, Chen YF, Peng Y, Hou WG, Sun SK, Luo ZJ (2012) Tanshinone IIA attenuates the inflammatory response and apoptosis after traumatic injury of the spinal cord in adult rats. PLoS One 7:e38381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young W (1993) Secondary injury mechanisms in acute spinal cord injury. J Emerg Med 11(Suppl 1):13–22

    PubMed  Google Scholar 

  • Yousuf S, Atif F, Kesherwani V, Agrawal SK (2011) Neuroprotective effects of Tacrolimus (FK-506) and Cyclosporin (CsA) in oxidative injury. Brain Behav 1:87–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Zawadzka M, Kaminska B (2005) A novel mechanism of FK506-mediated neuroprotection: downregulation of cytokine expression in glial cells. Glia 49:36–51

    Article  PubMed  Google Scholar 

  • Zhang Z, Krebs CJ, Guth L (1997) Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role of the inflammatory response. Exp Neurol 143:141–152

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang A, Sun Y, Cao X, Zhang N (2009) Treatment with immunosuppressants FTY720 and tacrolimus promotes functional recovery after spinal cord injury in rats. Tohoku J Exp Med 219:295–302

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zeng L, Yu T, Xu Y, Pu S, Du D, Jiang W (2014) Positive feedback loop of autocrine BDNF from microglia causes prolonged microglia activation. Cell Physiol Biochem 34:715–723

    Article  PubMed  Google Scholar 

  • Zhou N, Fu Y, Wang Y, Chen P, Meng H, Guo S, Zhang M, Yang Z, Ge Y (2014) p27 kip1 haplo-insufficiency improves cardiac function in early-stages of myocardial infarction by protecting myocardium and increasing angiogenesis by promoting IKK activation. Sci Rep 7(4):5978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianning Zhao.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Fan, G., Guo, G. et al. FK506 Attenuates the Inflammation in Rat Spinal Cord Injury by Inhibiting the Activation of NF-κB in Microglia Cells. Cell Mol Neurobiol 37, 843–855 (2017). https://doi.org/10.1007/s10571-016-0422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0422-8

Keywords

Navigation