Skip to main content
Log in

Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by hypoxia-inducible factor-1α

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The “protease web”, representing the network of proteases, their inhibitors, and effector molecules, arises as a pivotal determinant of tissue homeostasis. Imbalances of this network, for instance caused by elevated host levels of tissue inhibitor of metalloproteinases-1 (TIMP-1), have been shown to increase the susceptibility of target organs to scattered metastasis by inducing the hepatocyte growth factor (HGF) pathway. Increased expression of the hypoxia-inducible factor-1α-subunit (HIF-1α) is also associated with tumour progression and is also known to induce HGF-signaling via up-regulation of the HGF-receptor Met, namely under canonical stress conditions like lack of oxygen. Here, we aimed to identify a possible metastasis-promoting connection between TIMP-1, HIF-1α, and HGF-signaling. We found that HIF-1α and HIF-1-signaling were increased during liver metastasis of L-CI.5s T-lymphoma cells in TIMP-1 overexpressing syngeneic DBA/2 mice. In vitro, exposure of L-CI.5s cells to recombinant TIMP-1 revealed that TIMP-1 itself was able to induce HIF-1α and HIF-1-signaling. Knock-down of HIF-1α identified tumour cell-derived HIF-1α as mediator of this TIMP-1-induced invasiveness in vitro. In vivo, HIF-1α knock-down significantly impaired Met expression as well as Met phosphorylation and inhibited scattered liver metastasis. Furthermore, HGF-dependent TIMP-1-promoted Met phosphorylation and HGF-dependent TIMP-1-induced invasiveness in vitro was mediated by HIF-1α. We conclude that elevated levels of TIMP-1 in the microenvironment of tumour cells can promote metastasis by inducing HIF-1α-dependent HGF-signaling. This connection between a protease inhibitor (TIMP-1) and a classically stress-related factor (HIF-1α) is a so far undiscovered impact of the “protease web” on tissue homeostasis with important implications for metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ad:

Adenovirus

BSA:

Bovine serum albumine

CAIX:

Carboanhydrase IX

DAB:

3,3′-Diaminobenzidine

DAPI:

4′,6-Diamidine-2-phenylindole

HEK:

Human embryonic kidney cell

HGF:

Hepatocyte growth factor

HIF:

Hypoxia-inducible factor

HRE:

Hypoxia-responsive element

HRP:

Horseradish peroxidase

i.v.:

Intraveneous

Met:

Hepatocyte growth factor receptor

MMP:

Matrix metalloproteinase

NT:

Non-template

PBS:

Phosphate-buffered saline

Pfu:

Plaque-forming unit

qRT-PCR:

Quantitative real-time polymerase chain reaction

rec:

Recombinant

SDS-PAGE:

Sodiumdodecylsulfate polyacrylamide gel electrophoresis

SEM:

Standard error mean

sh:

Small hairpin

TBS:

2-Amino-2-(hydroxymethyl)-propane-1,3-diole-buffered saline

TIMP:

Tissue inhibitor of metalloproteinases

X-Gal:

5-Bromo-4-chloro-3-indolyl-β-d-galactopyranoside

References

  1. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66(23):11089–11093

    Article  CAS  PubMed  Google Scholar 

  2. Overall CM, Dean RA (2006) Degradomics: systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev 25(1):69–75

    Article  PubMed  Google Scholar 

  3. Kopitz C et al (2007) Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res 67(18):8615–8623

    Article  CAS  PubMed  Google Scholar 

  4. Schrotzlmair F et al. (2009) Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by host-derived urokinase-type plasminogen activator. J Cell Mol Med. doi:10.1111/j.1582-4934.2009.00951.x. Accessed 23 Oct 2009

  5. Benvenuti S, Comoglio PM (2007) The MET receptor tyrosine kinase in invasion and metastasis. J Cell Physiol 213(2):316–325

    Article  CAS  PubMed  Google Scholar 

  6. Pennacchietti S et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3(4):347–361

    Article  PubMed  Google Scholar 

  7. Mendoza M, Khanna C (2009) Revisiting the seed and soil in cancer metastasis. Int J Biochem Cell Biol 41(7):1452–1462

    Article  CAS  PubMed  Google Scholar 

  8. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899

    Article  CAS  PubMed  Google Scholar 

  9. Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signaling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443

    Article  CAS  PubMed  Google Scholar 

  10. Chan DA, Giaccia AJ (2007) Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 26(2):333–339

    Article  CAS  PubMed  Google Scholar 

  11. Brahimi-Horn MC, Pouyssegur J (2009) HIF at a glance. J Cell Sci 122(Pt 8):1055–1057

    Article  CAS  PubMed  Google Scholar 

  12. Wykoff CC et al (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60(24):7075–7083

    CAS  PubMed  Google Scholar 

  13. Aiello L et al (1979) Adenovirus 5 DNA sequences present and RNA sequences transcribed in transformed human embryo kidney cells (HEK-Ad-5 or 293). Virology 94(2):460–469

    Article  CAS  PubMed  Google Scholar 

  14. Krüger A, Schirrmacher V, von Hoegen P (1994) Scattered micrometastases visualized at the single-cell level: detection and re-isolation of lacZ-labeled metastasized lymphoma cells. Int J Cancer 58(2):275–284

    Article  PubMed  Google Scholar 

  15. Gerg M et al (2008) Distinct functionality of tumor cell-derived gelatinases during formation of liver metastases. Mol Cancer Res 6(3):341–351

    Article  CAS  PubMed  Google Scholar 

  16. Jones N, Shenk T (1978) Isolation of deletion and substitution mutants of adenovirus type 5. Cell 13(1):181–188

    Article  CAS  PubMed  Google Scholar 

  17. Hitt M et al (1995) Techniques for human adenovirus vector construction and characterization. In: Adolph KW (ed) Viral gene techniques. Academic Press, San Diego, pp 13–30

    Chapter  Google Scholar 

  18. Arlt M et al (2002) Increase in gelatinase-specificity of matrix metalloproteinase inhibitors correlates with antimetastatic efficacy in a T-Cell lymphoma model. Cancer Res 62(19):5543–5550

    CAS  PubMed  Google Scholar 

  19. Kopitz C et al (2005) Reduction of experimental human fibrosarcoma lung metastasis in mice by adenovirus-mediated cystatin C overexpression in the host. Cancer Res 65(19):8608–8612

    Article  CAS  PubMed  Google Scholar 

  20. Kopitz C et al (2008) Plasminogen activator inhibitor-2, but not cystatin C, inhibits the prometastatic activity of tissue inhibitor of metalloproteinases-1 in the liver. Hum Gene Ther 19(10):1039–1049

    Article  CAS  PubMed  Google Scholar 

  21. Flannelly J et al (2002) Metalloproteinase and tissue inhibitor of metalloproteinase expression in the murine STR/ort model of osteoarthritis. Osteoarthr Cartil 10(9):722–733

    Article  CAS  PubMed  Google Scholar 

  22. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Article  CAS  PubMed  Google Scholar 

  23. Schelter F et al. (2010) Identification of a survival-independent metastasis-enhancing role of hypoxia-inducible factor-1{alpha} with a hypoxia-tolerant tumor cell line. J Biol Chem. doi: 10.1074/jbc.M110.140608

Download references

Acknowledgments

The author thank Katja Honert, Mareike Lehnhoff, Tina Krause, and Dr Susanne Schaten (all from Institut für Experimentelle Onkologie und Therapieforschung des Klinikums rechts der Isar, Technische Universität München, Munich, Germany) for their expert technical assistance. For financial support, the authors thank the European Union Research Framework Programme 7, project HEALTH-2007-201279/Microenvimet (to Achim Krüger) and project HEALTH-F2-2009-222741/Metoxia (to Agnes Görlach), and the Deutsche Forschungsgemeinschaft, grant KR2047/1-1 (to Achim Krüger).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Krüger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schelter, F., Halbgewachs, B., Bäumler, P. et al. Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by hypoxia-inducible factor-1α. Clin Exp Metastasis 28, 91–99 (2011). https://doi.org/10.1007/s10585-010-9360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9360-x

Keywords

Navigation