Skip to main content
Log in

Asymmetrical growth of the photopic hill during the light adaptation effect

  • Original research article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

In response to progressively stronger flashes delivered against a rod saturating background light, the amplitude of the photopic ERG b-wave first increases, reaches a maximal value (V max) and then decreases gradually to a plateau where the amplitude of the b-wave equals that of the a-wave, a phenomenon known as the photopic hill (PH). The purpose of this study was to investigate how the PH grew during the course of the light adaptation (LA) process that follows a period of dark adaptation (DA): the so-called light adaptation effect (LAE). Photopic ERG (time-integrated) luminance-response (LR) functions were obtained prior to (control-fully light adapted) and at 0, 5 and 10 min of LA following a 30-min period of DA. A mathematical model combining a Gaussian and a logistic growth function, suggested to reflect the OFF and ON retinal contribution to the PH respectively, was fitted to the LR functions thus obtained. Our results indicate that the magnitude of the cone ERG LAE is modulated by the stimulus luminance, with b-wave enhancements being maximal for luminance levels that result in the descent of the PH. The Gaussian function grew significantly with LA while the logistic growth function remained basically unchanged. Our findings would therefore suggest that the LAE reflects primarily an increase in the retinal OFF response during LA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lachapelle P (1987) Analysis of the photopic electroretinogram recorded before and after dark adaptation. Can J Ophthalmol 22:354–361

    CAS  PubMed  Google Scholar 

  2. Gouras P, MacKay CJ (1989) Growth in amplitude of the human cone electroretinogram with light adaptation. Invest Ophthalmol Vis Sci 30:625–630

    CAS  PubMed  Google Scholar 

  3. Peachey NS, Alexander KR, Fishman GA (1991) Visual adaptation and the cone flicker electroretinogram. Invest Ophthalmol Vis Sci 32:1517–1522

    CAS  PubMed  Google Scholar 

  4. Peachey NS, Alexander KR, Derlacki DJ, Bobak P, Fishman GA (1991) Effects of light adaptation on the response characteristics of human oscillatory potentials. Electroencephalogr Clin Neurophysiol 78:27–34

    Article  CAS  PubMed  Google Scholar 

  5. Murayama K, Sieving PA (1992) Different rates of growth of monkey and human photopic a-, b- and d-waves suggest two sites of ERG light adaptation. Clin Vis Sci 7:385–392

    Google Scholar 

  6. Armington JC, Biersdorf WR (1958) Long-term light adaptation of the human electroretinogram. J Comp Physiol Psychol 51:1–5

    Article  CAS  PubMed  Google Scholar 

  7. Weleber RG, Eisner A (1992) Retinal function and physiological studies. In: Newsome DA (ed) Retinal dystrophies and degenerations. Raven Press, New York, pp 21–83

    Google Scholar 

  8. Peachey NA, Arakawa K, Alexander KR, Marchese AL (1992) Rapid and slow changes in the human cone electroretinogram during light and dark adaptation. Vision Res 32:2049–2053

    Article  CAS  PubMed  Google Scholar 

  9. Burian HM (1954) Electric responses of the human visual system. Arch Ophthalmol 51:509–524

    CAS  Google Scholar 

  10. Bui BV, Fortune B (2006) Origin of electroretinogram amplitude growth during light adaptation in pigmented rats. Vis Neurosci 23:155–167

    Article  PubMed  Google Scholar 

  11. Alexander LR, Raghuram A, Rajagopalan AS (2006) Cone phototransduction and growth of the ERG b-wave during light adaptation. Vision Res 46:3941–3948

    Article  PubMed  Google Scholar 

  12. Benoit J, Lachapelle P (1995) Light adaptation of the human photopic oscillatory potentials: influence of the length of the dark adaptation period. Doc Ophthalmol 89:267–276

    Article  CAS  PubMed  Google Scholar 

  13. Rousseau S, Lachapelle P (2000) Transient enhancing of cone electroretinograms following exposure to brighter photopic backgrounds: a new light adaptation effect. Vision Res 40:1013–1018

    Article  CAS  PubMed  Google Scholar 

  14. Wali N, Leguire LE (1992) The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 80:335–345

    Article  CAS  PubMed  Google Scholar 

  15. Kondo M, Piao CH, Tanikawa A, Horiguchi M, Terasaki H, Miyake Y (2000) Amplitude decrease of photopic ERG b-wave at higher stimulus intensities in humans. Jpn J Ophthalmol 44:20–28

    Article  CAS  PubMed  Google Scholar 

  16. Rufiange M, Rousseau S, Dembinska O, Lachapelle P (2002) Cone-dominated ERG luminance-response function: the Photopic Hill revisited. Doc Ophthalmol 104:231–248

    Article  PubMed  Google Scholar 

  17. Rufiange M, Dumont M, Lachapelle P (2002) Correlating retinal function with melatonin secretion in subjects with an early or late circadian phase. Invest Ophthalmol Vis Sci 43:2491–2499

    PubMed  Google Scholar 

  18. Rufiange M, Dassa J, Dembinska O, Koenekoop RK, Little JM, Polomeno RC, Dumont M, Chemtob S, Lachapelle P (2003) The photopic ERG luminance-response function (photopic hill): method of analysis and clinical application. Vision Res 43:1405–1412

    Article  PubMed  Google Scholar 

  19. Ueno S, Kondo M, Niwa S, Terasaki H, Miyake Y (2004) Luminance dependence of neural components that underlies the primate photopic electroretinogram. Invest Ophthalmol Vis Sci 45:1033–1040

    Article  PubMed  Google Scholar 

  20. Rufiange M, Dumont M, Lachapelle P (2005) Modulation of the human photopic ERG luminance-response function with the use of chromatic stimuli. Vision Res 45:2321–2330

    Article  PubMed  Google Scholar 

  21. Hamilton R, Bees MA, Chaplin CA, McCulloch DL (2007) The luminance-response function of the human photopic electroretinogram: a mathematical model. Vision Res 47:2968–2972

    Article  CAS  PubMed  Google Scholar 

  22. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M, International Society for Clinical Electrophysiology of Vision (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77

    Article  CAS  PubMed  Google Scholar 

  23. McCulloch DL, Hamilton R (2010) Essentials of photometry for clinical electrophysiology of vision. Doc Ophthalmol 121:77–84

    Article  PubMed  Google Scholar 

  24. Bush RA, Sieving PA (1994) A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci 35:635–645

    CAS  PubMed  Google Scholar 

  25. Rangaswamy NV, Hood DC, Frishman LJ (2003) Regional variations in local contributions to the primate photopic flash ERG: Revealed using the slow-sequence mfERG. Invest Ophthalmol Vis Sci 44:3233–3247

    Article  PubMed  Google Scholar 

  26. Beaulieu C, Rufiange M, Dumont M, Lachapelle P (2009) Modulation of ERG retinal sensitivity parameters with light environment and photoperiod. Doc Ophthalmol 118:89–99

    Article  PubMed  Google Scholar 

  27. Birch DG, Fish GE (1987) Rod ERGs in retinitis pigmentosa and cone-rod degeneration. Invest Ophthalmol Vis Sci 28:140–150

    CAS  PubMed  Google Scholar 

  28. Lachapelle P (1990) Oscillatory potentials as predictors to amplitude and peak time of the photopic b-wave of the human electroretinogram. Doc Ophthalmol 75:73–82

    Article  CAS  PubMed  Google Scholar 

  29. Lachapelle P (1991) Evidence for an intensity-coding oscillatory potential in the human electroretinogram. Vis Res 31:767–774

    Article  CAS  PubMed  Google Scholar 

  30. Nagata M (1963) Studies on the photopic ERG of the human retina. Jpn J Ophthalmol 7:96–124

    Google Scholar 

  31. Kojima M, Zrenner E (1978) OFF-components in response to brief light flashes in the oscillatory potential of the human electroretinogram. Albrecht Von Graefes Arch Clin Exp Ophthalmol 206:107–120

    Article  CAS  Google Scholar 

  32. Miyake Y, Yagasaki K, Horigushi M, Kawase Y (1987) ON- and OFF-responses in photopic electroretinogram in complete and incomplete types of congenital stationary night blindness. Jpn J Ophthalmol 31:81–87

    CAS  PubMed  Google Scholar 

  33. Nakajima Y, Iwakabe H, Akazawa C, Naka H, Shigemoto R, Mizuno N, Nakanishi S (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268:11868–11873

    CAS  PubMed  Google Scholar 

  34. Quigley M, Roy MS, Barsoum-Homsy M, Chevrette L, Jacob JL, Milot J (1996–1997) ON- and OFF-responses in the photopic electroretinogram in complete-type congenital stationary night blindness. Doc Ophthalmol 92:159-165

    Google Scholar 

  35. Lachapelle P, Rousseau S, McKerral M, Benoit J, Polomeno RC, Koenekoop RK, Little JM (1998) Evidence supportive of a functional discrimination between photopic oscillatory potentials as revealed with cone and rod mediated retinopathies. Doc Ophthalmol 95:35–54

    Article  CAS  PubMed  Google Scholar 

  36. Bech-Hansen NT, Naylor MJ, Maybaum TA, Sparkes RL, Koop B, Birch DG, Bergen AA, Prinsen CF, Polomeno RC, Gal A, Drack AV, Musarella MA, Jacobson SG, Young RS, Weleber RG (2000) Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet 26:319–323

    Article  CAS  PubMed  Google Scholar 

  37. Langrová H, Gamer D, Friedburg C, Besch D, Zrenner E, Apfelstedt-Sylla E (2002) Abnormalities of the long flash ERG in congenital stationary night blindness of the Schubert-Bornschein type. Vis Res 42:1475–1483

    Article  PubMed  Google Scholar 

  38. Dryja TP, McGee TL, Berson EL, Fishman GA, Sandberg MA, Alexander KR, Derlacki DJ, Rajagopalan AS (2005) Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci USA 102:4884–4889

    Article  CAS  PubMed  Google Scholar 

  39. Zeitz C, van Genderen M, Neidhardt J, Luhmann UF, Hoeben F, Forster U, Wycisk K, Matyas G, Hoyng CB, Riemslag F, Meire F, Cremers FP, Berger W (2005) Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. Invest Ophthalmol Vis Sci 46:4328–4335

    Article  PubMed  Google Scholar 

  40. Morgans CW, Ren G, Akileswaran L (2006) Localization of nyctalopin in the mammalian retina. Eur J Neurosci 23:1163–1171

    Article  PubMed  Google Scholar 

  41. Miyake Y, Horiguchi M, Ota I, Shiroyama N (1987) Characteristic ERG flicker anomaly in incomplete congenital stationary night blindness. Invest Ophthalmol Vis Sci 28:1816–1823

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by McGill University-Montreal Children’s Hospital Research Institute, the Canadian Institute for Health Research, the Foundation Fighting Blindness (USA) and FRSQ-Réseau-Vision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lachapelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garon, ML., Rufiange, M., Hamilton, R. et al. Asymmetrical growth of the photopic hill during the light adaptation effect. Doc Ophthalmol 121, 177–187 (2010). https://doi.org/10.1007/s10633-010-9243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-010-9243-0

Keywords

Navigation