Skip to main content

Advertisement

Log in

Morphological and electrophysiological outcome in prospective intravitreal bevacizumab treatment of macular edema secondary to central retinal vein occlusion

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To evaluate intravitreal bevacizumab (IVB) treatment in patients with central retinal vein occlusion (CRVO) by spectral domain optical coherence tomography (OCT) and electroretinography (ERG).

Methods

Twenty-two CRVO patients were treated with IVB injections and followed for 1 year. Morphological effect of treatment was observed with fluorescent angiography and OCT. Functional effect was followed with best corrected visual acuity (BCVA) and ERG: combined rod-cone response of the standard full-field ERG (dark adapted 3.0 ERG), photopic negative response (PhNR), and pattern ERG (PERG).

Results

Best corrected visual acuity (BCVA) improved by 18.2 letters after 6 months (p ≤ 0.001) and additional 4.7 letters by the 12th month (p ≤ 0.001). The central retinal thickness of 829.8 ± 256.7 μm decreased to 398.8 ± 230 μm (p ≤ 0.001) after 6 months and to 303.7 ± 128.9 μm during the following 6 months (p ≤ 0.001). The total macular volume (14.4 ± 4.2 mm3) decreased to 9.6 ± 3.2 mm3 and 8.5 ± 2.0 mm3 after 6 months and 1 year of treatment, respectively (p ≤ 0.001). Electrophysiological measures improved significantly after 6 months and 1 year of treatment: the a-wave implicit time of dark adapted 3.0 ERG from 25.6 ± 2.3 to 24.1 ± 2.1 and 24.1 ± 2.0 ms (p ≤ 0.01); the PhNR from −5.9 ± 6.6 to −9.4 ± 6.1 and −10.4 ± 4.6 µV (p ≤ 0.05); the PERG P50 amplitude from 0.2 ± 0.3 to 0.9 ± 0.6 and 1.1 ± 0.6 µV (p ≤ 0.001); and N95 amplitude from 0.4 ± 0.6 to 1.2 ± 0.9 and 1.6 ± 0.9 µV (p ≤ 0.001).

Conclusions

Intravitreal bevacizumab (IVB) treatment of macular edema due to CRVO improved standard morphological measures and the electrophysiological function of outer and inner retinal layers, which was most evident in central retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rogers S, McIntosh RL, Cheung N et al (2010) The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology 117(313–9):e1. doi:10.1016/j.ophtha.2009.07.017

    PubMed  Google Scholar 

  2. Mitchell P, Smith W, Chang A (1996) Prevalence and associations of retinal vein occlusion in Australia. The Blue Mountains Eye Study. Arch Ophthalmol 114:1243–1247

    Article  CAS  PubMed  Google Scholar 

  3. Mohamed Q, McIntosh RL, Saw SM, Wong TY (2007) Interventions for central retinal vein occlusion: an evidence-based systematic review. Ophthalmology 114(507–19):524. doi:10.1016/j.ophtha.2006.11.011

    Google Scholar 

  4. Karia N (2010) Retinal vein occlusion: pathophysiology and treatment options. Clin Ophthalmol 4:809–816

    Article  PubMed Central  PubMed  Google Scholar 

  5. Noma H, Funatsu H, Mimura T et al (2010) Increase of vascular endothelial growth factor and interleukin-6 in the aqueous humour of patients with macular oedema and central retinal vein occlusion. Acta Ophthalmol 88:646–651. doi:10.1111/j.1755-3768.2009.01524.x

    Article  CAS  PubMed  Google Scholar 

  6. Coscas G, Loewenstein A, Augustin A et al (2011) Management of retinal vein occlusion–consensus document. Ophthalmologica 226:4–28. doi:10.1159/000327391

    Article  PubMed  Google Scholar 

  7. Mekjavic PJ, Kraut A, Urbancic M et al (2011) Efficacy of 12-month treatment of neovascular age-related macular degeneration with intravitreal bevacizumab based on individually determined injection strategies after three consecutive monthly injections. Acta Ophthalmol 89:647–653. doi:10.1111/j.1755-3768.2009.01740.x

    Article  CAS  PubMed  Google Scholar 

  8. Algvere PV, Epstein D, von Wendt G et al (2011) Intravitreal bevacizumab in central retinal vein occlusion: 18-month results of a prospective clinical trial. Eur J Ophthalmol 21:789–795. doi:10.5301/EJO.2011.6522

    Article  PubMed  Google Scholar 

  9. Epstein DL, Algvere PV, von Wendt G et al (2012) Benefit from bevacizumab for macular edema in central retinal vein occlusion: twelve-month results of a prospective, randomized study. Ophthalmology 119:2587–2591. doi:10.1016/j.ophtha.2012.06.037

    Article  PubMed  Google Scholar 

  10. Rensch F, Jonas JB, Spandau UHM (2009) Early intravitreal bevacizumab for non-ischaemic central retinal vein occlusion. Acta Ophthalmol 87:77–81. doi:10.1111/j.1755-3768.2008.01313.x

    Article  PubMed  Google Scholar 

  11. Figueroa MS, Contreras I, Noval S, Arruabarrena C (2010) Results of bevacizumab as the primary treatment for retinal vein occlusions. Br J Ophthalmol 94:1052–1056. doi:10.1136/bjo.2009.173732

    Article  CAS  PubMed  Google Scholar 

  12. Costa RA, Jorge R, Calucci D et al (2007) Intravitreal bevacizumab (avastin) for central and hemicentral retinal vein occlusions: iBeVO study. Retina 27:141–149. doi:10.1097/IAE.0b013e31802eff83

    Article  PubMed  Google Scholar 

  13. Pai SA, Shetty R, Vijayan PB et al (2007) Clinical, anatomic, and electrophysiologic evaluation following intravitreal bevacizumab for macular edema in retinal vein occlusion. Am J Ophthalmol 143:601–606. doi:10.1016/j.ajo.2006.12.037

    Article  CAS  PubMed  Google Scholar 

  14. Shetty R, Pai SA, Vincent A et al (2008) Electrophysiological and structural assessment of the central retina following intravitreal injection of bevacizumab for treatment of macular edema. Doc Ophthalmol 116:129–135. doi:10.1007/s10633-007-9090-9

    Article  PubMed  Google Scholar 

  15. Moschos MM, Moschos M (2008) Intraocular bevacizumab for macular edema due to CRVO. A multifocal-ERG and OCT study. Doc Ophthalmol 116:147–152. doi:10.1007/s10633-007-9110-9

    Article  PubMed  Google Scholar 

  16. Moon CH, Ahn S, Ohn Y-H II et al (2013) Visual prognostic value of photopic negative response and optical coherence tomography in central retinal vein occlusion after anti-VEGF treatment. Doc Ophthalmol 126:211–219. doi:10.1007/s10633-013-9379-9

    Article  PubMed  Google Scholar 

  17. Morrell AJ, Thompson DA, Gibson JM et al (1991) Electroretinography as a prognostic indicator or neovascularisation in CRVO. Eye (Lond) 5(Pt 3):362–368. doi:10.1038/eye.1991.58

    Article  Google Scholar 

  18. Sabates R, Hirose T, McMeel JW (1983) Electroretinography in the prognosis and classification of central retinal vein occlusion. Arch Ophthalmol 101:232–235. doi:10.1001/archopht.1983.01040010234010

    Article  CAS  PubMed  Google Scholar 

  19. Hayreh SS, Klugman MR, Podhajsky P, Kolder HE (1989) Electroretinography in central retinal vein occlusion. Correlation of electroretinographic changes with pupillary abnormalities. Graefes Arch Clin Exp Ophthalmol 227:549–561

    Article  CAS  PubMed  Google Scholar 

  20. Johnson MA, Marcus S, Elman MJ, McPhee TJ (1988) Neovascularization in central retinal vein occlusion: electroretinographic findings. Arch Ophthalmol 106:348–352

    Article  CAS  PubMed  Google Scholar 

  21. Robson JG, Frishman LJ (1999) Dissecting the dark-adapted electroretinogram. Doc Ophthalmol 95:187–215

    Article  CAS  Google Scholar 

  22. Brown KT (1968) The electroretinogram: its components and their origins. Vis Res 8:633–677

    Article  CAS  PubMed  Google Scholar 

  23. Chen H, Wu D, Huang S, Yan H (2006) The photopic negative response of the flash electroretinogram in retinal vein occlusion. Doc Ophthalmol 113:53–59. doi:10.1007/s10633-006-9015-z

    Article  PubMed  Google Scholar 

  24. Matsui Y, Katsumi O, McMeel JW, Hirose T (1994) Prognostic value of initial electroretinogram in central retinal vein obstruction. Graefes Arch Clin Exp Ophthalmol 232:75–81. doi:10.1007/BF00171667

    Article  CAS  PubMed  Google Scholar 

  25. Matsui Y, Katsumi O, Sakaue H, Hirose T (1994) Electroretinogram b/a wave ratio improvement in central retinal vein obstruction. Br J Ophthalmol 78:191–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Williamson TH (1997) Central retinal vein occlusion: what’s the story? Br J Ophthalmol 81:698–704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Moschos M, Brouzas D, Moschou M, Theodossiadis G (1999) The a- and b-wave latencies as a prognostic indicator of neovascularisation in central retinal vein occlusion. Doc Ophthalmol 99:123–133

    Article  CAS  PubMed  Google Scholar 

  28. Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42:514–522

    CAS  PubMed  Google Scholar 

  29. Viswanathan S, Frishman LJ, Robson JG et al (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40:1124–1136

    CAS  PubMed  Google Scholar 

  30. Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41:2797–2810

    CAS  PubMed  Google Scholar 

  31. Holder GE (1987) Significance of abnormal pattern electroretinography in anterior visual pathway dysfunction. Br J Ophthalmol 71:166–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ryan S, Arden GB (1988) Electrophysiological discrimination between retinal and optic nerve disorders. Doc Ophthalmol 68:247–255

    Article  CAS  PubMed  Google Scholar 

  33. Central Vein Occlusion Study Group (1995) A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. The Central Vein Occlusion Study Group N report. Ophthalmology 102:1434–1444

  34. Hawlina M, Konec B (1992) New noncorneal HK-loop electrode for clinical electroretinography. Doc Ophthalmol 81:253–259

    Article  CAS  PubMed  Google Scholar 

  35. Marmor MF, Fulton AB, Holder GE et al (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77. doi:10.1007/s10633-008-9155-4

    Article  CAS  PubMed  Google Scholar 

  36. Hood DC, Bach M, Brigell M et al (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol 116:1–11. doi:10.1007/s10633-007-9089-2

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bach M, Brigell MG, Hawlina M et al (2013) ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol 126:1–7. doi:10.1007/s10633-012-9353-y

    Article  PubMed  Google Scholar 

  38. Sustar M, Cvenkel B, Brecelj J (2009) The effect of broadband and monochromatic stimuli on the photopic negative response of the electroretinogram in normal subjects and in open-angle glaucoma patients. Doc Ophthalmol 118:167–177. doi:10.1007/s10633-008-9150-9

    Article  PubMed  Google Scholar 

  39. Aiello LP, Brucker AJ, Chang S et al (2004) Evolving guidelines for intravitreous injections. Retina 24:S3–S19

    Article  PubMed  Google Scholar 

  40. McIntosh RL, Rogers SL, Lim L et al (2010) Natural history of central retinal vein occlusion: an evidence-based systematic review. Ophthalmology 117(1113–1123):e15. doi:10.1016/j.ophtha.2010.01.060

    PubMed  Google Scholar 

  41. Arden GB, Hamilton AM, Wilson-Holt J et al (1986) Pattern electroretinograms become abnormal when background diabetic retinopathy deteriorates to a preproliferative stage: possible use as a screening test. Br J Ophthalmol 70:330–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Coupland SG (1987) A comparison of oscillatory potential and pattern electroretinogram measures in diabetic retinopathy. Doc Ophthalmol 66:207–218

    Article  CAS  PubMed  Google Scholar 

  43. Falsini B, Porciatti V, Scalia G et al (1989) Steady-state pattern electroretinogram in insulin-dependent diabetics with no or minimal retinopathy. Doc Ophthalmol 73:193–200

    Article  CAS  PubMed  Google Scholar 

  44. Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20:531–561

    Article  CAS  PubMed  Google Scholar 

  45. Breton ME, Schueller AW, Montzka DP (1991) Electroretinogram b-wave implicit time and b/a wave ratio as a function of intensity in central retinal vein occlusion. Ophthalmology 98:1845–1853

    Article  CAS  PubMed  Google Scholar 

  46. Kaye SB, Harding SP (1988) Early electroretinography in unilateral central retinal vein occlusion as a predictor of rubeosis iridis. Arch Ophthalmol 106:353–356. doi:10.1001/archopht.1988.01060130379026

    Article  CAS  PubMed  Google Scholar 

  47. Campochiaro PA, Bhisitkul RB, Shapiro H, Rubio RG (2013) Vascular endothelial growth factor promotes progressive retinal nonperfusion in patients with retinal vein occlusion. Ophthalmology 120:795–802. doi:10.1016/j.ophtha.2012.09.032

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. Anja Milenković Kramer, MSc for all the statistical support, Mrs. Marija Jesenšek, Mrs. Ana Jeršin, and Miss Helena Lindič for PERG and PhNR recordings. Mrs. Barbara Klemenc, Miss Anja Hudoklin, Mr. Darko Perovšek, MSc, Mr. Matjaž Miljan and Mr. Mitja Pipan for performing FA and OCT. This study was financially supported by the Slovene Research Agency Grant No. P3-0333 and No. 57/07/09.

Conflict of interest

The authors declare no actual or potential conflicts of interest relevant to this subject matter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Gardašević Topčić.

Additional information

Clinical Trial Registration Number: 57/07/09.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardašević Topčić, I., Šuštar, M., Brecelj, J. et al. Morphological and electrophysiological outcome in prospective intravitreal bevacizumab treatment of macular edema secondary to central retinal vein occlusion. Doc Ophthalmol 129, 27–38 (2014). https://doi.org/10.1007/s10633-014-9445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-014-9445-y

Keywords

Navigation