Skip to main content
Log in

Modelling spatial zero-inflated continuous data with an exponentially compound Poisson process

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

A parsimonious model is presented as an alternative to delta approaches to modelling zero-inflated continuous data. The data model relies on an exponentially compound Poisson process, also called the law of leaks (LOL). It represents the process of sampling resources that are spatially distributed as Poisson distributed patches, each containing a certain quantity of biomass drawn from an exponential distribution. In an application of the LOL, two latent structures are proposed to account for spatial dependencies between zero values at different scales within a hierarchical Bayesian framework. The LOL is compared to the delta-gamma (ΔΓ) distribution using bottom-trawl survey data. Results of this case study emphasize that the LOL provides slightly better fits to learning samples with a very high proportion of zero values and small strictly positive abundance data. Additionally, it offers better predictions of validation samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison J, Brown JAC (1957) The lognormal distribution with special reference to its uses in econometrics. Cambridge University Press, Cambridge

    Google Scholar 

  • Ancelet S (2008) Exploiter l’approche hiérarchique bayésienne pour la modélisation statistique de structures spatiales. Application en écologie des populations. Dissertation, Agro Paris Tech, Paris Institute of Life and Environmental Science and Technology

  • Banerjee S, Carlin B, Gelfand A (2004) Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Bernier J, Fandeux D (1970) Théorie du renouvellement—application à l’étude statistique des précipitations mensuelles. Rev Stat Appl 18(2): 75–87

    Google Scholar 

  • Besag J, York J, Mollié A (1991) Bayesian image restoration with two applications in spatial statistics. Ann I Stat Math 43(1): 1–51

    Article  Google Scholar 

  • Brooks SP, Gelman A (1998) Alternative methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4): 434–455

    Article  Google Scholar 

  • Chyan-Huei Lo N, Jacobson LD, Squire JL (1992) Indices of relative abundance from fish spotter data based on delta-lognormal models. Can J Fish Aquat Sci 49(12): 2515–2526

    Article  Google Scholar 

  • Congdon P (2001) Bayesian statistical modelling. John Wiley & Sons Inc., New York

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. John Wiley & Sons Inc., New York

    Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications. John Wiley & Sons Inc., New York

    Google Scholar 

  • Fletcher D, MacKenzie D, Villouta E (2005) Modelling skewed data with many zeros: a simple approach combining ordinary and logistic regression. Environ Ecol Stat 12(1): 45–54

    Article  Google Scholar 

  • Gelfand AE, Ghosh S (1998) Model choice: a minimum posterior predictive loss approach. Biometrika 85(1): 1–11

    Article  Google Scholar 

  • Gelfand AE, Smith AFM (1990) Sampling based approach to calculating marginal densities. J Am Stat Assoc 85(410): 398–409

    Article  Google Scholar 

  • Hall DB (2000) Zero-inflated Poisson and binomial regression with random dffects: a case study. Biometrics 56(4): 1030–1039

    Article  CAS  PubMed  Google Scholar 

  • Heilbron DC (1994) Zero-altered and other regression models for count data with added zeros. Biometrical J 36(5): 531–547

    Article  Google Scholar 

  • Hurlbut T, Clay D (1990) Protocols for research vessel cruises within the Gulf Region (demersal fish)(1970–1987). Can Manus Rep Fish Aquat Sci 2082: 2143

    Google Scholar 

  • Kass RE, Raftery AE (1994) Bayes factors. J Am Stat Assoc 90(430): 773–795

    Article  Google Scholar 

  • Lambert D (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34(1): 1–4

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, Amsterdam

    Google Scholar 

  • Lempers FB (1971) Posterior probabilities of alternative linear models. Rotterdam University Press, Rotterdam

    Google Scholar 

  • Loring DH, Nota DJG (1973) Morphology and sediments of the Gulf of St. Lawrence. B Fish Res Board Can 182: 147

    Google Scholar 

  • Martin TG et al (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8: 1235–1246

    Article  Google Scholar 

  • Myers RA, Pepin P (1990) The robustness of lognormal based estimators of abundance. Biometrics 46(4): 1185–1192

    Article  Google Scholar 

  • O’Hagan A (1995) Fractional bayes factors for model comparison. J Roy Stat Soc B 57(1): 99–138

    Google Scholar 

  • Pennington M (1983) Efficient estimators of abundance for fish and planktons survey. Biometrics 39(1): 281–286

    Article  Google Scholar 

  • Pennington M (1996) Estimating the mean and variance from highly skewed marine data. Fish B 94: 498–505

    Google Scholar 

  • Ridout M, Demétrio CGB, Hinde J (1998) Models for count data with many zeros, International biometric conference, Cape Town

  • Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer, New York

    Google Scholar 

  • Sinharay S, Stern HS (2002) On the sensitivity of Bayes factors to the prior distributions. Am Stat 56(6): 196–201

    Article  Google Scholar 

  • Spiegelhalter D, Best N, Carlin BP, VanDer Linde A (2002) Bayesian measures of model complexity and fit. J Roy Stat Soc B 64(4): 583–639

    Article  Google Scholar 

  • Spiegelhalter D, Thomas A, Best N, Lunn D (2007) OpenBUGS user manual, Version 3.0.2, MRC Biostatistics Unit, Cambridge, Available via http://www.mathstat.helsinki.fi/openbugs/

  • Stefansson G (1996) Analysis of groundfish survey abundance data: combining the GLM and delta approaches. ICES J Mar Sci 53(3): 577–588

    Article  Google Scholar 

  • Thomas A, Best N, Lunn D, Arnold R, Spiegelhalter D (2007) GeoBUGS user manual, Version 1.3, Rolf Nevanlinna Institute, Available via http://www.mathstat.helsinki.fi/openbugs/

  • Welsh AH, Cunningham RB, Donnelly CF, Lindenmayer DB (1996) Modelling the abundance of rare species: statistical counts with extra zeros. Ecol Model 88(1): 297–308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Ancelet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ancelet, S., Etienne, MP., Benoît, H. et al. Modelling spatial zero-inflated continuous data with an exponentially compound Poisson process. Environ Ecol Stat 17, 347–376 (2010). https://doi.org/10.1007/s10651-009-0111-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-009-0111-6

Keywords

Navigation