Skip to main content

Advertisement

Log in

Early stage fetal neocortex exhibits a complex ganglioside profile as revealed by high resolution tandem mass spectrometry

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In this study we report on the first mass spectrometric (MS) investigation of gangliosides and preliminary assessment of the expression and structure in normal fetal neocortex in early developmental stages: 14th (Neo14) and 16th (Neo16) gestational weeks. Ganglioside analysis was carried out using a hybrid quadrupole time-of-flight (QTOF) MS with direct sample infusion by nanoelectrospray ionization (nanoESI) in the negative ion mode. Under optimized conditions a large number of glycoforms i.e. 75 in Neo14 and 71 in Neo16 mixtures were identified. The ganglioside species were found characterized by a high diversity of the ceramide constitution, an elevated sialylation degree (up to pentasialylated gangliosides-GP1) and sugar cores modified by fucosylation (Fuc) and acetylation (O-Ac). Direct comparison between Neo14 and Neo16 revealed a prominent expression of monosialylated structures in the Neo16 as well as the presence of a larger number of polysialylated species in Neo14 which constitutes a clear marker of rapid development-dependant changes in the sialylation. Also the MS screening results highlighted that presumably O-acetylation process occurs faster than fucosylation. CID MS/MS under variable collision energy applied for the first time for structural analysis of a fucosylated pentasialylated species induced an efficient fragmentation with generation of ions supporting Fuc-GP1d isomer in early stage fetal brain neocortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Ac:

Acetyl/acetylation

Cer:

Ceramide

gw:

Gestational weeks

CID:

Collision-induced dissociation

Neu5Ac:

N-acetyl neuraminic acid

NanoESI:

Nanoelectrospray ionization

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

TIC:

Total ion chromatogram

QTOF MS:

Quadrupole time-of-flight mass spectrometer/spectrometry

LM:

Low mass resolution

HM:

High mass resolution

LacCer:

Galβ4Glcβ1Cer

GM3:

II3-α-Neu5Ac-LacCer

GD3:

II3-α-(Neu5Ac)2-LacCer

GT3:

II3-α-(Neu5Ac)3-LacCer

GM2:

II3-α-Neu5Ac-Gg3Cer

GD2:

II3-α-(Neu5Ac)2-Gg3Cer

GM1a or GM1:

II3-α-Neu5Ac-Gg4Cer

GM1b:

IV3-α-Neu5Ac-Gg4Cer

GalNAc-GM1b:

IV3-α-Neu5Ac-Gg5Cer

GD1a:

IV3-α-Neu5Ac,II3-α-Neu5Ac-Gg4Cer

GD1b:

II3-α-(Neu5Ac)2-Gg4Cer

GT1b:

IV3-α-Neu5Ac,II3-α-(Neu5Ac)2-Gg4Cer

GQ1b:

IV3-α-(Neu5Ac)2,II3-α-(Neu5Ac)2-Gg4Cer

nLM1 or 3′-nLM1:

IV3-α-Neu5Ac-nLc4Cer

LM1 or 3′-isoLM1:

IV3-α-Neu5Ac-Lc4Cer

nLD1:

disialo-nLc4Cer

References

  1. Lui, J.H., Hansen, D.V., Kriegstein, A.R.: Development and evolution of the human neocortex. Cell 146(1), 18–36 (2011)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Zeng, H., Shen, E.H., Hohmann, J.G., Oh, S.W., Bernard, A., Royall, J.J., Glattfelder, K.J., Sunkin, S.M., Morris, J.A., Guillozet-Bongaarts, A.L., Smith, K.A., Ebbert, A.J., Swanson, B., Kuan, L., Page, D.T., Overly, C.C., Lein, E.S., Hawrylycz, M.J., Hof, P.R., Hyde, T.M., Kleinman, J.E., Jones, A.R.: Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149, 483–496 (2012)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Ronan, L., Voets, N., Rua, C., Alexander-Bloch, A., Hough, M., Mackay, C., Crow, T.J., James, A., Giedd, J.N., Fletcher, P.C.: Differential tangential expansion as a mechanism for cortical gyrification. Cereb. Cortex (2013). doi:10.1093/cercor/bht082

    PubMed  Google Scholar 

  4. Van Essen, D.C., Drury, H.A., Joshi, S., Miller, M.I.: Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc. Natl. Acad. Sci. U. S. A. 95, 788–795 (1998)

    Article  PubMed Central  PubMed  Google Scholar 

  5. Svennerholm, L.: Ganglioside designation. Adv. Exp. Med. Biol. 125, 125–211 (1980)

    Article  Google Scholar 

  6. Tettamanti, G.: Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj. J. 20, 301–317 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. Sonnino, S., Mauri, L., Chigorno, V., Prinetti, A.: Gangliosides ascomponents of lipid membrane domains. Glycobiology 17(1), 1R–13R (2006). doi:10.1093/glycob/cwl052

    Article  PubMed  Google Scholar 

  8. Yu, R.K., Nakatani, Y., Yanagisawa, M.: The role of glycosphingolipid metabolism in the developing brain. J. Lipid Res. 50, 440–445 (2009)

    Article  CAS  Google Scholar 

  9. McJarrow, P., Schnell, N., Jumpsen, J., Clandinin, T.: Influence of dietary gangliosides on neonatal brain development. Nutr. Rev. 67, 451–463 (2009)

    Article  PubMed  Google Scholar 

  10. Ledeen, R.W.: Gangliosides of the neuron. Trends Neurosci. 8, 169–174 (1985)

    Article  CAS  Google Scholar 

  11. Svennerholm, L.: Identification of the accumulated ganglioside. Adv. Genet. 44, 33–41 (2001)

    Article  PubMed  CAS  Google Scholar 

  12. Ngamukote, S., Yanagisawa, M., Ariga, T., Ando, S., Yu, R.K.: Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J. Neurochem. 103, 327–341 (2007)

    Article  CAS  Google Scholar 

  13. Saito, M., Mao, R.F., Wang, R., Vadasz, C.: Effects of gangliosides on ethanol-induced neurodegeneration in the developing mouse brain. Alcohol. Clin. Exp. Res. 31, 665–674 (2007)

    PubMed  CAS  Google Scholar 

  14. Okada, T., Wakabayashi, M., Ikeda, K., Matsuzaki, K.: Formation of toxic fibrils of Alzheimer’s amyloid beta-protein-(1–40) by monosialoganglioside GM1, a neuronal membrane component. J. Mol. Biol. 371, 481–489 (2007)

    Article  PubMed  CAS  Google Scholar 

  15. Mosoarca, C., Ghiulai, R.M., Novaconi, C.R., Vukelić, Z., Chiriac, A., Zamfir, A.D.: Application of chip-based nanoelectrospray ion trap mass spectrometry to compositional and structural analysis of gangliosides in human fetal cerebellum. Anal. Lett. 44, 1036–1049 (2011)

    Article  CAS  Google Scholar 

  16. Serb, A., Schiopu, C., Flangea, C., Vukelić, Ž., Sisu, E., Zagrean, L., Zamfir, A.D.: High-throughput analysis of gangliosides in defined regions of fetal brain by fully automated chip-based nanoelectrospray ionization multi-stage mass spectrometry. Eur. J. Mass Spectrom. 15, 541–553 (2009)

    Article  CAS  Google Scholar 

  17. Vukelic, Z., Zarei, M., Peter-Katalinic, J., Zamfir, A.D.: Analysis of human hippocampus gangliosides by fully-automated chip-based nanoelectrospray tandem mass spectrometry. J. Chromatogr. A 1130, 238–245 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. Almeida, R., Mosoarca, C., Chirita, M., Udrescu, V., Dinca, N., Vukelic, Z., Allen, M., Zamfir, A.D.: Coupling of fully automated chip-based electrospray ionization to high-capacity ion trap mass spectrometer for ganglioside analysis. Anal. Biochem. 378, 43–52 (2008)

    Article  PubMed  CAS  Google Scholar 

  19. Zamfir, A., Vukelić, Z., Bindila, L., Peter-Katalinić, J., Almeida, R., Sterling, A., Allen, M.: Fully-automated chip-based nanoelectrospray tandem mass spectrometry of gangliosides from human cerebellum. J. Am. Soc. Mass Spectrom. 15(11), 1649–1657 (2004)

    Article  PubMed  CAS  Google Scholar 

  20. Serb, A.F., Sisu, E., Vukelić, Z., Zamfir, A.D.: Profiling and sequencing of gangliosides from human caudate nucleus by chip-nanoelectrospray mass spectrometry. J. Mass Spectrom. 47(12), 1561–1570 (2012)

    Article  PubMed  CAS  Google Scholar 

  21. Svennerholm, L., Fredman, P.: A procedure for the quantitative isolation of brain gangliosides. Biochim. Biophys. Acta 617, 97–109 (1980)

    Article  PubMed  CAS  Google Scholar 

  22. Vukelić, Ž., Metelmann, W., Müthing, J., Kos, M., Peter-Katalinić, J.: Anencephaly: structural characterization of gangliosides in defined brain regions. J. Biol. Chem. 382, 259–274 (2001)

    Google Scholar 

  23. Svennerholm, L.: Quantitative estimation of sialic acids II. A colorimetric resorcinol-hydrochloric acid method. Biochim. Biophys. Acta 24, 104–111 (1957)

    Google Scholar 

  24. Miettinen, T., Takki-Luukkainen, I.T.: Use of buthylacetate in determination of sialic acid. Acta Chem. Scand. 13, 656–658 (1959)

    Google Scholar 

  25. Flangea, C., Serb, A., Sisu, E., Zamfir, A.D.: Chip-based nanoelectrospray mass spectrometry of brain gangliosides. Biochim. Biophys. Acta 1811(9), 513–535 (2011)

    Article  PubMed  CAS  Google Scholar 

  26. Sisu, E., Flangea, C., Serb, A., Zamfir, A.D.: High-performance separation techniques hyphenated to mass spectrometry for ganglioside analysis. Electrophoresis 32, 1591–1609 (2011)

    PubMed  CAS  Google Scholar 

  27. Svennerholm, L.: Ganglioside designation. Adv. Exp. Med. Biol. 125, 11 (1980)

    Article  PubMed  CAS  Google Scholar 

  28. IUPAC-IUB Joint Commission on Biochemical Nomenclature: Eur. J. Biochem. 257, 293–298 (1998)

    Article  Google Scholar 

  29. Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB MS/MS of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

    Article  CAS  Google Scholar 

  30. Ann, Q., Adams, J.: Structure determination of ceramides and neutral glycosphingolipids by collisional activation of [M + Li]+ ions. J. Am. Soc. Mass Spectrom. 3, 260–263 (1992)

    Article  PubMed  CAS  Google Scholar 

  31. Flangea, C., Sisu, E., Seidler, D.G., Zamfir, A.D.: Analysis of oversulfation in biglycan chondroitin/dermatan sulfate oligosaccharides by chip-based nanoelectrospray ionization multistage mass spectrometry. Anal. Biochem. 420, 155–162 (2012)

    Article  PubMed  CAS  Google Scholar 

  32. Breimer, M.E., Hansson, G.C., Karlsson, K.A., Larson, G., Leffler, H.: Glycosphingolipid composition of epithelial cells isolated along the villus axis of small intestine of a single human individual. Glycobiology 22, 1721–1730 (2012)

    Article  PubMed  CAS  Google Scholar 

  33. Flangea, C., Fabris, C., Vukelic, Z., Zamfir, A.D.: Mass spectrometry of gangliosides from human sensory and motor cortex. Aus. J. Chem. 66(7), 781–790 (2013)

    Article  CAS  Google Scholar 

  34. Saito, M., Sugiyama, K.: Tissue-specific expression of c-series gangliosides in the extraneural system. Biochim. Biophys. Acta 1474, 88–92 (2000)

    Article  PubMed  CAS  Google Scholar 

  35. Kracun, I., Rosner, H., Drnovsek, V., Vukelic, Z., Cosovic, C., Trbojevic-Cepe, M., Kubat, M.: Gangliosides in the human brain development and aging. Neurochem. Int. 20, 421–431 (1992)

    Article  PubMed  CAS  Google Scholar 

  36. Zamfir, A.D., Serb, A., Vukelić, Ž., Flangea, C., Schiopu, C., Fabris, D., Kalanj-Bognar, S., Capitan, F., Sisu, E.: Assessment of the Molecular Expression and Structure of Gangliosides in Brain Metastasis of Lung Adenocarcinoma by an Advanced Approach Based on Fully Automated Chip-Nanoelectrospray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 22, 2145–2159 (2011)

    Article  PubMed  CAS  Google Scholar 

  37. Orczyk-Pawiłowicz, M., Augustyniak, D., Hirnle, L., Kątnik-Prastowska, I.: Lectin-based analysis of fucose and sialic acid expressions on human amniotic IgA during normal pregnancy. Glycoconj. J. 30(6), 599–608 (2013)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Social Fund, through the project POSDRU 107/1.5/S/78702, EU FP7 MARIE CURIE-PIRSES-GA-2010-269256 and by the Romanian National Authority for Scientific Research through the projects PN-II-ID-PCE-2011-3-0047 and PN-II-PCCA-2011-142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina D. Zamfir.

Additional information

Roxana M. Ghiulai and Mirela Sarbu have equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghiulai, R.M., Sarbu, M., Vukelić, Ž. et al. Early stage fetal neocortex exhibits a complex ganglioside profile as revealed by high resolution tandem mass spectrometry. Glycoconj J 31, 231–245 (2014). https://doi.org/10.1007/s10719-014-9517-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-014-9517-y

Keywords

Navigation