Skip to main content
Log in

Improving the efficiency of the operating room environment with an optimization and machine learning model

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

The operating room is a major cost and revenue center for most hospitals. Thus, more effective operating room management and scheduling can provide significant benefits. In many hospitals, the post-anesthesia care unit (PACU), where patients recover after their surgical procedures, is a bottleneck. If the PACU reaches capacity, patients must wait in the operating room until the PACU has available space, leading to delays and possible cancellations for subsequent operating room procedures. We develop a generalizable optimization and machine learning approach to sequence operating room procedures to minimize delays caused by PACU unavailability. Specifically, we use machine learning to estimate the required PACU time for each type of surgical procedure, we develop and solve two integer programming models to schedule procedures in the operating rooms to minimize maximum PACU occupancy, and we use discrete event simulation to compare our optimized schedule to the existing schedule. Using data from Lucile Packard Children’s Hospital Stanford, we show that the scheduling system can significantly reduce operating room delays caused by PACU congestion while still keeping operating room utilization high: simulation of the second half of 2016 shows that our model could have reduced total PACU holds by 76% without decreasing operating room utilization. We are currently working on implementing the scheduling system at the hospital.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. (2016). Gurobi Optimizer reference manual. Gurobi Optimization Inc., http://www.gurobi.com

  2. (2017). SimPy: Discrete event simulation for Python. https://simpy.readthedocs.io

  3. Bam M, Denton BT, van Oyen MP, Cowen ME (2017) Surgery scheduling with recovery resources. IISE Trans 49(10):942–955

    Article  Google Scholar 

  4. Barlatt AY, Cohn A, Gusikhin O, Fradkin Y, Davidson R, Batey J (2012) Ford Motor Company implements integrated planning and scheduling in a complex automotive manufacturing environment. Interfaces 42 (5):478–491

    Article  Google Scholar 

  5. Bertsimas D, Kallus N (2014) From predictive to prescriptive analytics. ArXiv e-prints

  6. Berwick DM, Hackbarth AD (2012) Eliminating waste in US health care. JAMA 307(14):1513–1516

    Article  Google Scholar 

  7. Birge JR, Louveaux F (2011) Introduction to stochastic programming, 2nd edn. Springer, New York

    Book  Google Scholar 

  8. Bravo F, Levi R, Ferrari LR, McManus ML (2015) The nature and sources of variability in pediatric surgical case duration. Paediat Anaesth 25(10):999–1006

    Article  Google Scholar 

  9. Butchers ER, Day PR, Goldie AP, Miller S, Meyer JA, Ryan DM, Scott AC, Wallace CA (2001) Optimized crew scheduling at Air New Zealand. Interfaces 31(1):30–56

    Article  Google Scholar 

  10. Cardoen B, Demeulemeester E, Beliën J (2010) Operating room planning and scheduling: A literature review. Eur J Oper Res 201(3):921–932

    Article  Google Scholar 

  11. Childers CP, Maggard-Gibbons M (2018) Understanding costs of care in the operating room. JAMA Surg 153(4):e176233

    Article  Google Scholar 

  12. Denton B, Gupta D (2003) A sequential bounding approach for optimal appointment scheduling. IIE Trans 35(11):1003–1016

    Article  Google Scholar 

  13. Dexter F, Epstein RH, Penning DH (2001) Statistical analysis of postanesthesia care unit staffing at a surgical suite with frequent delays in admission from the operating room – a case study. Anesth Analg 92(4):947–949

    Article  Google Scholar 

  14. Dexter F, Blake JT, Penning DH, Lubarsky DA (2002) Calculating a potential increase in hospital margin for elective surgery by changing operating room time allocations or increasing nursing staffing to permit completion of more cases: A case study. Anesth Analg 94(1):138–142

    Google Scholar 

  15. Dexter F, Epstein RH, Marcon E, de Matta R (2005) Strategies to reduce delays in admission into a postanesthesia care unit from operating rooms. J Perianesth Nurs 20(2):92–102

    Article  Google Scholar 

  16. Durand A, Kim H, Pei F, Petersen K (2018) A generalizable, systematic approach to improving perioperative efficiency. Working Paper

  17. Hartman M, Martin AB, Espinosa N, Catlin A, The National Health Expenditures Account Team (2018) National health care spending in 2016: Spending and enrollment growth slow after initial coverage expansions. Health Aff (Millwood) 37(1):150–160

    Article  Google Scholar 

  18. Hastie T, Tibshirani R, Friedman J (2009a) Additive models, trees, and related methods. In: The elements of statistical learning, chap 9. Springer, New York, pp 295–336

    Google Scholar 

  19. Hastie T, Tibshirani R, Friedman J (2009b) Boosting and adaptive trees. In: The elements of statistical learning, chap 10. Springer, New York, pp 337–388

  20. Henry J, Pylypchuk Y, Searcy T, Patel V (2016) Adoption of electronic health record systems among U.S. non-Federal acute care hospitals: 2008-2015. ONC data brief no 35, The Office of the National Coordinator for Health Information Technology, Washington, DC

  21. Holland C, Levis J, Nuggehalli R, Santilli B, Winters J (2017) UPS optimizes delivery routes. Interfaces 47(1):8–23

    Article  Google Scholar 

  22. Institute of Medicine (2012) Best care at lower cost: The path to continuously learning health care in America. National Academies Press, Washington, DC

    Google Scholar 

  23. Macario A (2010) What does one minute of operating room time cost? J Clin Anesth 22(4):233–236

    Article  Google Scholar 

  24. Marcon E, Dexter F (2007) An observational study of surgeons’ sequencing of cases and its impact on postanesthesia care unit and holding area staffing requirements at hospitals. Anesth Analg 105(1):119–126

    Article  Google Scholar 

  25. Master N, Zhou Z, Miller D, Scheinker D, Bambos N, Glynn P (2017) Predicting pediatric surgical durations. Int J Data Science Analytics 4(1):35–52

    Article  Google Scholar 

  26. (2009). One hundred eleventh Congress of the United States of America Health Information Technology for Economic and Clinical Health Act

  27. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in Python. J Machine Learn Res 12:2825–2830

    Google Scholar 

  28. Perkins RT III, Powell WB (2017) Stochastic optimization with parametric cost function approximations. ArXiv e-prints

  29. Rath S, Rajaram K, Mahajan A (2017) Integrated anesthesiologist and room scheduling for surgeries: Methodology and application. Oper Res 65(6):1460–1478

    Article  Google Scholar 

  30. Schoenmeyr T, Dunn PF, Gamarnik D, Levi R, Berger DL, Daily BJ, Levine WC, Sandberg WS (2009) A model for understanding the impacts of demand and capacity on waiting time to enter a congested recovery room. Anesthesiology 110(6):1293–1304

    Article  Google Scholar 

  31. Shippert RD (2005) A study of time-dependent operating room fees and how to save $100 000 by using time-saving products. Am J Cosmetic Surg 22(1):25–34

    Article  Google Scholar 

  32. Zenteno AC, Carnes T, Levi R, Daily BJ, Price D, Moss SC, Dunn PF (2015) Pooled open blocks shorten wait times for nonelective surgical cases. Ann Surg 262(1):60–67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fairley.

Additional information

Partially funded by the Lucile Packard Children’s Hospital SURF Stanford Medicine program

Appendix: Reformulation of IP2

Appendix: Reformulation of IP2

We make IP2 linear by representing the objective function as a piecewise linear function using auxiliary variables, δti.

$$\begin{array}{@{}rcl@{}} && \text{IP2}: \min \quad \sum\limits_{t \in T} \sum\limits_{i = 1}^{C} (2i - 1)\delta_{ti} \end{array} $$
(31)
$$\begin{array}{@{}rcl@{}} && \text{subject to} \\ && z_{t} = \sum\limits_{i = 1}^{C} \delta_{ti} {\kern55pt} (\forall t \in T) \end{array} $$
(32)
$$\begin{array}{@{}rcl@{}} && \delta_{ti} \geq \delta_{t(i + 1)} {\kern50pt}\begin{array}{l} (\forall t \in T)\\ \quad(\forall i \in \{1, 2, \ldots, C-1\}) \end{array} \end{array} $$
(33)
$$\begin{array}{@{}rcl@{}} && f_{r} \leq f_{r}^{*} + \hat{f}{\kern50pt} (\forall r \in R) \end{array} $$
(34)
$$\begin{array}{@{}rcl@{}} && z_{t} ={} \underset{t^{*} \in T :h(t^{*},t,p) = 1}{\sum\limits_{p \in P_{p}}} {}x_{pt^{*}} {\kern38pt}(\forall t \in T) \end{array} $$
(35)
$$\begin{array}{@{}rcl@{}} && z_{t} \leq C {\kern75pt}(\forall t \in T) \end{array} $$
(36)
$$\begin{array}{@{}rcl@{}} && 1 = \sum\limits_{t \in T} x_{pt}{\kern55pt}(\forall p \in P) \end{array} $$
(37)
$$\begin{array}{@{}rcl@{}} && 0 ={} \sum\limits_{t^{*} \in T:b(t^{*},p) = 1} {}x_{pt^{*}}{\kern42pt}(\forall p \in P) \end{array} $$
(38)
$$\begin{array}{@{}rcl@{}} && f_{r} \geq \sum\limits_{t \in T} (t+s_{p}+d_{p}+c_{p}) x_{pt}\\&&{\kern100pt}(\forall r \in R)(\forall p \in P_{r} \setminus P_{f}) \end{array} $$
(39)
$$\begin{array}{@{}rcl@{}} && 1 \geq{} \underset{t^{*} \in T:a(t^{*},t,p) = 1}{\sum\limits_{p \in P_{r}}} {}x_{pt^{*}} {\kern39pt}(\forall t \in T)(\forall r \in R) \end{array} $$
(40)
$$\begin{array}{@{}rcl@{}} && 1 \geq{} \underset{t^{*} \in T:a(t^{*},t,p) = 1}{\sum\limits_{p \in P_{e}}x_{pt^{*}}}{\kern39pt}(\forall t \in T)(\forall e \in E)\end{array} $$
(41)
$$\begin{array}{@{}rcl@{}} && 1 = x_{pk_{p}}{\kern65pt}(\forall p \in P_{q}) \end{array} $$
(42)
$$\begin{array}{@{}rcl@{}} && (1 - x_{pt})M \geq{} \underset{t^{*} \in T: t^{*} < t}{\sum\limits_{v \in P_{r(p)},v\neq p}} {}x_{st^{*}}{\kern13pt}(\forall t \in T)(\forall p \in P_{f}) \end{array} $$
(43)
$$\begin{array}{@{}rcl@{}} && (1 - x_{pt})M \geq{} \underset{t^{*} \in T: t^{*} > t}{\sum\limits_{v \in P_{r(p)},v\neq p}} {}x_{st^{*}}{\kern15pt}(\forall t \in T)(\forall p \in P_{l}) \end{array} $$
(44)
$$\begin{array}{@{}rcl@{}} && x_{pt} \in \{0, 1\}{\kern55pt}(\forall p \in P)(\forall t \in T) \end{array} $$
(45)
$$\begin{array}{@{}rcl@{}} && \delta_{ti} \in \{0, 1\}{\kern56pt}\begin{array}{l} (\forall t \in T)\\ \quad(\forall i \in \{1, 2, \ldots, C\}) \end{array} \end{array} $$
(46)

Equation 32 calculates the PACU occupancy as the sum of the auxiliary variables, δti, and Eq. 33 ensures that a δti, variable is 1 if δt(i+ 1) is 1. Together, these constraints make δit equal to 1 when the PACU occupancy is at least i.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fairley, M., Scheinker, D. & Brandeau, M.L. Improving the efficiency of the operating room environment with an optimization and machine learning model. Health Care Manag Sci 22, 756–767 (2019). https://doi.org/10.1007/s10729-018-9457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-018-9457-3

Keywords

Navigation