Skip to main content
Log in

Developmental patterns of caspase-3, bax and bcl-2 proteins expression in the human spinal ganglia

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The distribution of the bcl-2, bax and caspase-3 proteins was investigated in the cells of developing human spinal ganglia. Paraffin sections of 10 human conceptuses between 5th and 9th gestational weeks were analysed morphologically, immunohistochemically and by TUNEL-method. Cells positive to caspase-3 had brown stained nuclei or nuclear fragmentations. At earliest stages, 6% of ganglion population were caspase-3 positive cells. Later on, a significant increase in number of caspase-3 positive cells appeared, particularly in the ventral part of ganglia (12%), and subsequently decreased to 6%. TUNEL-positive cells had the same distribution pattern as caspase-3 positive cells. Bax-positive cells followed the developmental pattern similar to caspase-3 cells, changing in range between 20% and 32%. There were 8% of bcl-2 positive cells at earliest stages. They increased significantly in dorsal part of the ganglion during the 7th week (28%), and than dropped to 15% by the end of the 8th week. These findings suggest a ventro-dorsal course of development in human spinal ganglia. Number of bcl-2, bax and caspase-3 positive cells changed in a temporally and spatially restricted manner, coincidently with ganglion differentiation. While apoptosis might control cell number, bcl-2 could act in suppression of apoptosis and enhancement of cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams JM, Cory S (1998) The bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Andres KH (1961) Research on the fine-structure of spinal ganglia. Z Zellforsch Mikrosk Anat 55:1–48

    Article  PubMed  CAS  Google Scholar 

  • Bozanic D, Tafra R, Saraga-Babic M (2003) Role of apoptosis and mitosis during human eye development. Eur J Cell Biol 82:421–429

    Article  PubMed  Google Scholar 

  • Bronner-Fraser M, Stern CD, Fraser S (1991) Analysis of neural crest cell lineage and migration. J Craniofac Genet Dev Biol 11:214–222

    PubMed  CAS  Google Scholar 

  • Bunge MB, Bunge RP, Peterson ER et al (1967) A light and electron microscope study of long-term organized cultures of rat dorsal root ganglia. J Cell Biol 32:439–466

    Article  PubMed  CAS  Google Scholar 

  • Carev D, Krnic D, Saraga M et al (2006) Role of mitotic, pro-apoptotic and anti-apoptotic factors in human kidney development. Pediatr Nephrol 21:627–636

    Article  PubMed  Google Scholar 

  • Chang BS, Minn AJ, Muchmore SW et al (1997) Identification of a novel regulatory domain in bcl-X(L) and bcl-2. Embo J 16:968–977

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Graham SH, Nakayama M et al (1997) Apoptosis repressor genes bcl-2 and bcl-x-long are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab 17:2–10

    Article  PubMed  CAS  Google Scholar 

  • Cregan SP, MacLaurin JG, Craig CG et al (1999) Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 19:7860–7869

    PubMed  CAS  Google Scholar 

  • D’Mello SR, Kuan CY, Flavell RA et al (2000) Caspase-3 is required for apoptosis-associated DNA fragmentation but not for cell death in neurons deprived of potassium. J Neurosci Res 59:24–31

    Article  PubMed  CAS  Google Scholar 

  • Duce IR, Keen P (1977) An ultrastructural classification of the neuronal cell bodies of the rat dorsal root ganglion using zinc iodide-osmium impregnation. Cell Tissue Res 185:263–277

    Article  PubMed  CAS  Google Scholar 

  • Fujita E, Urase K, Egashira J et al (2000) Detection of caspase-9 activation in the cell death of the bcl-x-deficient mouse embryo nervous system by cleavage sites-directed antisera. Brain Res Dev Brain Res 122:135–147

    Article  PubMed  CAS  Google Scholar 

  • Gillardon F, Wickert H, Zimmermann M (1994) Differential expression of bcl-2 and bax mRNA in axotomized dorsal root ganglia of young and adult rats. Eur J Neurosci 6:1641–1644

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V (1992) History of the discovery of neuronal death in embryos. J Neurobiol 23:1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Brunso-Bechtold JK, Yip JW (1981) Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci 1:60–71

    PubMed  CAS  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin XM et al (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251

    Article  PubMed  CAS  Google Scholar 

  • Johnson EM Jr, Deckwerth TL, Deshmukh M (1996) Neuronal death in developmental models: possible implications in neuropathology. Brain Pathol 6:397–409

    Article  PubMed  Google Scholar 

  • Kai-Kai MA, Keen P (1985) Localization of 5-hydroxytryptamine to neurons and endoneurial mast cells in rat sensory ganglia. J Neurocytol 14:63–78

    Article  PubMed  CAS  Google Scholar 

  • Kamiya H, Zhangm W, Sima AA (2005) Apoptotic stress is counterbalanced by survival elements preventing programmed cell death of dorsal root ganglions in subacute type 1 diabetic BB/Wor rats. Diabetes 54:3288–3295

    Article  PubMed  CAS  Google Scholar 

  • Kouroku Y, Urase K, Fujita E et al (1998) Detection of activated Caspase-3 by a cleavage site-directed antiserum during naturally occurring DRG neurons apoptosis. Biochem Biophys Res Commun 247:780–784

    Article  PubMed  CAS  Google Scholar 

  • Krajewska M, Mai JK, Zapata JM et al (2002) Dynamics of expression of apoptosis-regulatory proteins bid, bcl-2, bcl-X, bax and bak during development of murine nervous system. Cell Death Differ 9:145–157

    Article  PubMed  CAS  Google Scholar 

  • Kuida K, Zheng TS, Na S et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    Article  PubMed  CAS  Google Scholar 

  • Lawson SN (1979) The postnatal development of large light and small dark neurons in mouse dorsal root ganglia: a statistical analysis of cell numbers and size. J Neurocytol 8:275–294

    Article  PubMed  CAS  Google Scholar 

  • LeBrun DP, Warnke RA, Cleary ML (1993) Expression of bcl-2 in fetal tissues suggests a role in morphogenesis. Am J Pathol 142:743–753

    PubMed  CAS  Google Scholar 

  • Lewin B, Cassimeris L, Lingappa RV et al (2007) Cells. Jones and Bartlett Publishers, Sudbury, Massachusetts

  • Li GL, Brodin G, Farooque M et al (1996) Apoptosis and expression of bcl-2 after compression trauma to rat spinal cord. J Neuropathol Exp Neurol 55:280–289

    PubMed  CAS  Google Scholar 

  • Lichnovsky V, Kolar Z, Murray P et al (1998) Differences in p53 and bcl-2 expression in relation to cell proliferation during the development of human embryos. Mol Pathol 51:131–137

    PubMed  CAS  Google Scholar 

  • Lipton SA (1986) Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture. Proc Natl Acad Sci USA 83:9774–9778

    Article  PubMed  CAS  Google Scholar 

  • Martinou JC, Dubois-Dauphin M, Staple JK et al (1994) Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13:1017–1030

    Article  PubMed  CAS  Google Scholar 

  • Merry DE, Korsmeyer SJ (1997) Bcl-2 gene family in the nervous system. Annu Rev Neurosci 20:245–267

    Article  PubMed  CAS  Google Scholar 

  • Merry DE, Veis DJ, Hickey WF et al (1994) Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development 120:301–311

    PubMed  CAS  Google Scholar 

  • Moore K (1989) Before we are born: basic embryology and birth defects. Saunders, Philadelphia

    Google Scholar 

  • Nievelstein RA, Hartwig NG, Vermeij-Keers C et al (1993) Embryonic development of the mammalian caudal neural tube. Teratology 48:21–31

    Article  PubMed  CAS  Google Scholar 

  • Okuno S, Shimizu S, Ito T et al (1998) Bcl-2 prevents caspase-independent cell death. J Biol Chem 273:34272–34277

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    Article  PubMed  CAS  Google Scholar 

  • O’Rahilly R, Gardner E (1971) The timing and sequence of events in the development of the human nervous system during the embryonic period proper. Z Anat Entwicklungsgesch 134:1–12

    Article  PubMed  CAS  Google Scholar 

  • Pannese E (1974) The histogenesis of the spinal ganglia. Adv Anat Embryol Cell Biol 47:7–97

    PubMed  CAS  Google Scholar 

  • Rambourg A, Clermont Y, Beaudet A (1983) Ultrastructural features of six types of neurons in rat dorsal root ganglia. J Neurocytol 12:47–66

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (1997) Double identity for proteins of the bcl-2 family. Nature 387:773–776

    Article  PubMed  CAS  Google Scholar 

  • Sapunar D, Vilovic K, England M et al (2001) Morphological diversity of dying cells during regression of the human tail. Ann Anat 183:217–222

    PubMed  CAS  Google Scholar 

  • Saraga-Babic M, Lehtonen E, Svajger A et al (1994) Morphological and immunohistochemical characteristics of axial structures in the transitory human tail. Ann Anat 176:277–286

    PubMed  CAS  Google Scholar 

  • Sohma O, Mizuguchi M, Takashima S et al (1996) High expression of bcl-x protein in the developing human cerebellar cortex. J Neurosci Res 43:175–182

    Article  PubMed  CAS  Google Scholar 

  • Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381

    Article  PubMed  CAS  Google Scholar 

  • Streeter G (1945) Developmental horizons in human embryos. Description of age groups XIII, embryos about 4 to 5 millimeters long, and age group XIV, period of indentation of the lens vesicle. Contrib Embryol Carnegie Instn 31:27–47

    Google Scholar 

  • Takahashi K, Ninomiya T (1987) Morphological changes of dorsal root ganglion cells in the process-forming period. Prog Neurobiol 29:393–410

    Article  PubMed  CAS  Google Scholar 

  • Urase K, Fujita E, Miho Y et al (1998) Detection of activated caspase-3 (CPP32) in the vertebrate nervous system during development by a cleavage site-directed antiserum. Brain Res Dev Brain Res 111:77–87

    Article  PubMed  CAS  Google Scholar 

  • Veis DJ, Sentman CL, Bach EA et al (1993) Expression of the bcl-2 protein in murine and human thymocytes and in peripheral T lymphocytes. J Immunol 151:2546–2554

    PubMed  CAS  Google Scholar 

  • Vekrellis K, McCarthy MJ, Watson A et al (1997) Bax promotes neuronal cell death and is downregulated during the development of the nervous system. Development 124:1239–1249

    PubMed  CAS  Google Scholar 

  • Vilovic K, Ilijic E, Glamoclija V et al (2006) Cell death in developing human spinal cord. Anat Embryol (Berl) 211:1–9

    Article  Google Scholar 

  • Walicke PA (1989) Novel neurotrophic factors, receptors, and oncogenes. Annu Rev Neurosci 12:103–126

    Article  PubMed  CAS  Google Scholar 

  • White FA, Keller-Peck CR, Knudson CM et al (1998) Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J Neurosci 18:1428–1439

    PubMed  CAS  Google Scholar 

  • Wolpert L, Jessell T, Lawrence P et al (2007) Principles of development. Oxford University Press Inc., New York

    Google Scholar 

  • Yachnis AT, Powell SZ, Olmsted JJ et al (1997) Distinct neurodevelopmental patterns of bcl-2 and bcl-x expression are altered in glioneuronal hamartias of the human temporal lobe. J Neuropathol Exp Neurol 56:186–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Asja Miletic for expert technical assistance. This work was supported by the Ministry of Science, Education and Sports of the Republic of Croatia (grant no. 021-2160528-0507 and grant no. 021-2160528-0522), Federation Ministry of Education and Science of the Republic of Bosnia and Herzegovina (grant “Development of human peripheral nervous system”) and Croatian-Slovenian project “Biomarkers of normal and abnormal development and associated multifactorial disorders”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina Vukojevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vukojevic, K., Carev, D., Sapunar, D. et al. Developmental patterns of caspase-3, bax and bcl-2 proteins expression in the human spinal ganglia. J Mol Hist 39, 339–349 (2008). https://doi.org/10.1007/s10735-008-9171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-008-9171-4

Keywords

Navigation