Skip to main content

Advertisement

Log in

Preventive effects of hyperbaric oxygen treatment on glycerol-induced myoglobinuric acute renal failure in rats

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Myoglobinuric acute renal failure (ARF) is a uremic syndrome caused by traumatic or non-traumatic skeletal muscle breakdown and intracellular elements that are released into the bloodstream. We hypothesized that hyperbaric oxygen (HBO) therapy could be beneficial in the treatment of myoglobinuric ARF caused by rhabdomyolysis. A total of 32 rats were used in the study. The rats were divided into four groups: control, control+hyperbaric oxygen (control+HBO), ARF, and ARF+hyperbaric oxygen (ARF+HBO). Glycerol (8 ml/kg) was injected into the hind legs of each of the rats in ARF and ARF+HBO groups. 2.5 atmospheric absolute HBO was applied to the rats in the control+HBO and ARF+HBO groups for 90 min on two consecutive days. Plasma urea, creatinine, sodium, potassium, calcium, aspartate aminotransferase, alanine aminotransferase, lactic dehydrogenase, creatinine kinase and urine creatinine and sodium were examined. Creatinine clearance and fractional sodium excretion could then be calculated. Superoxide dismutase, catalase, glutathione and malondialdehyde (MDA) levels were assessed in renal tissue. Tissue samples were evaluated by Hematoxylin-eosin, PCNA and TUNEL staining histopathologically. MDA levels were found to be significantly decreased whereas SOD and CAT were twofold higher in the ARF+HBO group compared to the ARF group. Renal function tests were ameliorated by HBO therapy. Semiquantitative evaluation of histopathological findings indicated that necrosis and cast formation was decreased by HBO therapy and TUNEL staining showed that apoptosis was inhibited. PCNA staining showed that HBO therapy did not increase regeneration. Ultimately, we conclude that, in accordance with our hypothesis, HBO could be beneficial in the treatment of myoglobinuric ARF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abassi ZA, Hoffman A, Better OS (1998) Acute renal failure complicating muscle crush injury. Semin Nephrol 18(5):558–565

    PubMed  CAS  Google Scholar 

  • Abul-Ezz SR, Walker PD, Shah SV (1991) Role of glutathione in an animal model of myoglobinuric acute renal failure. Proc Natl Acad Sci USA 88(21):9833–9837

    Article  PubMed  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Atasoyu EM, Yildiz S, Bilgi O, Cermik H, Evrenkaya R, Aktas S, Gültepe M, Kandemir EG (2005) Investigation of the role of hyperbaric oxygen therapy in cisplatin-induced nephrotoxicity in rats. Arch Toxicol 79(5):289–293

    Article  PubMed  CAS  Google Scholar 

  • Ay H, Uzun G, Onem Y, Aydinoz S, Yildiz S, Bilgi O, Topal T, Atasoyu EM (2007) Effect of hyperbaric oxygen on cyclosporine-induced nephrotoxicity and oxidative stress in rats. Ren Fail 29(4):495–501

    Article  PubMed  CAS  Google Scholar 

  • Aydogdu N, Atmaca G, Yalcin O, Taskiran R, Tastekin E, Kaymak K (2006) Protective effects of L-carnitine on myoglobinuric acute renal failure in rats. Clin Exp Pharmacol Physiol 33(1–2):119–124

    Article  PubMed  CAS  Google Scholar 

  • Baliga R, Ueda N, Walker PD, Shah SV (1997) Oxidant mechanisms in toxic acute renal failure. Am J Kidney Dis 29(3):465–477

    Article  PubMed  CAS  Google Scholar 

  • Bamri-Ezzine S, Ao ZJ, Londoño I, Gingras D, Bendayan M (2003) Apoptosis of tubular epithelial cells in glycogen nephrosis during diabetes. Lab Invest 83(7):1069–1080

    Article  PubMed  Google Scholar 

  • Beetham R (2000) Biochemical investigation of suspected rhabdomyolysis. Ann Clin Biochem 37(Pt 5):581–587

    Article  PubMed  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    PubMed  CAS  Google Scholar 

  • Bonegio R, Lieberthal W (2002) Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens 11(3):301–308

    Article  PubMed  Google Scholar 

  • Bouachour G, Cronier P, Gouello JP, Toulemonde JL, Talha A, Alquier P (1996) Hyperbaric oxygen therapy in the management of crush injuries: a randomized double-blind placebo-controlled clinical trial. J Trauma 41(2):333–339

    Article  PubMed  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  • Chan RK, Austen WG Jr, Ibrahim S, Ding GY, Verna N, Hechtman HB, Moore FD Jr (2004) Reperfusion injury to skeletal muscle affects primarily type II muscle fibers. J Surg Res 122(1):54–60

    Article  PubMed  CAS  Google Scholar 

  • Cohn GH (1986) Hyperbaric oxygen therapy. Promoting healing in difficult cases. Postgrad Med 79(2):89–92

    PubMed  CAS  Google Scholar 

  • Emerit J, Beaumont C, Trivin F (2001) Iron metabolism, free radicals, and oxidative injury. Biomed Pharmacother 55(6):333–339

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick DT, Murphy PT, Bryce M (1998) Adjunctive treatment of compartment syndrome with hyperbaric oxygen. Mil Med 163(8):577–579

    PubMed  CAS  Google Scholar 

  • Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47(5):412–426

    PubMed  CAS  Google Scholar 

  • Gonzalez D (2005) Crush syndrome. Crit Care Med 33(1 Suppl):34–41

    Article  Google Scholar 

  • Holt SG, Moore KP (2001) Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med 27(5):803–811

    Article  PubMed  CAS  Google Scholar 

  • Homsi E, Janino P, de Faria JB (2006) Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int 69(8):1385–1392

    PubMed  CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of Avidin–Biotin–Peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    Article  PubMed  CAS  Google Scholar 

  • Ijichi H, Taketomi A, Yoshizumi T, Uchiyama H, Yonemura Y, Soejima Y, Shimada M, Maehara Y (2006) Hyperbaric oxygen induces vascular endothelial growth factor and reduces liver injury in regenerating rat liver after partial hepatectomy. J Hepatol 45(1):28–34

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka S, Yano T, Hagiwara K, Sone M, Nihei H, Ozasa H, Horikawa S (1999) Extracellular signal-regulated kinase mediates renal regeneration in rats with myoglobinuric acute renal injury. Biochem Biophys Res Commun 254(1):88–92

    Article  PubMed  CAS  Google Scholar 

  • Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7(3):153–163

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Jung MH, Choi MY, Kim YH, Sheverdin V, Kim JH, Ha HJ, Park DJ, Kang SS, Cho GJ, Choi WS, Chang SH (2009) Glutamine attenuates tubular cell apoptosis in acute kidney injury via inhibition of the c-Jun N-terminal kinase phosphorylation of 14-3-3. Crit Care Med 37(6):2033–2044

    Article  PubMed  CAS  Google Scholar 

  • Knochel JP (1998) Rhabdomyolisis and acute renal failure. In: Glossock RJ (ed) Current therapy in nephrology and hypertension, 4th edn. Mosby, St. Louis, pp 262–265

    Google Scholar 

  • MacLean JG, Barrett DS (1993) Rhabdomyolysis: a neglected priority in the early management of severe limb trauma. Injury 24(3):205–207

    Article  PubMed  CAS  Google Scholar 

  • Malinoski DJ, Slater MS, Mullins RJ (2004) Crush injury and rhabdomyolysis. Crit Care Clin 20(1):171–192

    Article  PubMed  Google Scholar 

  • Mink RB, Dutka AJ (1995) Hyperbaric oxygen after global cerebral ischemia in rabbits reduces brain vascular permeability and blood flow. Stroke 26(12):2307–2312

    Article  PubMed  CAS  Google Scholar 

  • Miwa S, Muller FL, Beckman KB (2008) Oxidative stress in aging: from model systems to human diseases. Springer, New York

    Google Scholar 

  • Myers RA (2000) Hyperbaric oxygen therapy for trauma: crush injury, compartment syndrome, and other acute traumatic peripheral ischemias. Int Anesthesiol Clin 38(1):139–151

    Article  PubMed  CAS  Google Scholar 

  • Nylander G, Lewis D, Nordström H, Larsson J (1985) Reduction of postischemic edema with hyperbaric oxygen. Plast Reconstr Surg 76(4):596–603

    Article  PubMed  CAS  Google Scholar 

  • Odeh M (1991) The role of reperfusion-induced injury in the pathogenesis of the crush syndrome. N Engl J Med 324(20):1417–1422

    Article  PubMed  CAS  Google Scholar 

  • Ozden TA, Uzun H, Bohloli M, Toklu AS, Paksoy M, Simsek G, Durak H, Issever H, Ipek T (2004) The effects of hyperbaric oxygen treatment on oxidant and antioxidants levels during liver regeneration in rats. Tohoku J Exp Med 203(4):253–265

    Article  PubMed  CAS  Google Scholar 

  • Paller MS (1988) Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity. Am J Physiol 255(3 Pt 2):F539–F544

    PubMed  CAS  Google Scholar 

  • Paller MS, Hedlund BE (1988) Role of iron in postischemic renal injury in the rat. Kidney Int 34(4):474–480

    Article  PubMed  CAS  Google Scholar 

  • Reitan JA, Kien ND, Thorup S, Corkill G (1990) Hyperbaric oxygen increases survival following carotid ligation in gerbils. Stroke 21(1):119–123

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein I, Abassi Z, Milman F, Ovcharenko E, Coleman R, Winaver J, Better OS (2009) Hyperbaric oxygen treatment improves GFR in rats with ischaemia/reperfusion renal injury: a possible role for the antioxidant/oxidant balance in the ischaemic kidney. Nephrol Dial Transplant 24(2):428–436

    Article  PubMed  CAS  Google Scholar 

  • Shah SV (1988) Evidence suggesting a role for hydroxyl radical in passive Heymann nephritis in rats. Am J Physiol 254(3 Pt 2):F337–F344

    PubMed  CAS  Google Scholar 

  • Shah SV, Walker PD (1988) Evidence suggesting a role for hydroxyl radical in glycerol-induced acute renal failure. Am J Physiol 255(3 Pt 2):438–443

    Google Scholar 

  • Skyhar MJ, Hargens AR, Strauss MB, Gershuni DH, Hart GB, Akeson WH (1996) Hyperbaric oxygen reduces edema and necrosis of skeletal muscle in compartment syndromes associated with hemorrhagic hypotension. J Bone Joint Surg Am 68(8):1218–1224

    Google Scholar 

  • Smith J, Greaves I (2003) Crush injury and crush syndrome: a review. J Trauma 54(5 Suppl):226–230

    Google Scholar 

  • Solmazgul E, Uzun G, Cermik H, Atasoyu EM, Aydinoz S, Yildiz S (2007) Hyperbaric oxygen therapy attenuates renal ischemia/reperfusion injury in rats. Urol Int 78(1):82–85

    Article  PubMed  CAS  Google Scholar 

  • Strauss MB, Hargens AR, Gershuni DH, Greenberg DA, Crenshaw AG, Hart GB, Akeson WH (1983) Reduction of skeletal muscle necrosis using intermittent hyperbaric oxygen in a model compartment syndrome. J Bone Joint Surg Am 65(5):656–662

    PubMed  CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    PubMed  CAS  Google Scholar 

  • Vanholder R, Sever MS, Erek E, Lameire N (2000a) Acute renal failure related to the crush syndrome: towards an era of seismo-nephrology? Nephrol Dial Transplant 15(10):1517–1521

    Article  PubMed  CAS  Google Scholar 

  • Vanholder R, Sever MS, Erek E, Lameire N (2000b) Rhabdomyolysis. J Am Soc Nephrol 11(8):1553–1561

    PubMed  CAS  Google Scholar 

  • Warren JD, Blumbergs PC, Thompson PD (2002) Rhabdomyolysis: a review. Muscle Nerve 25(3):332–347

    Article  PubMed  CAS  Google Scholar 

  • Wong VY, Keller PM, Nuttall ME, Kikly K, DeWolf WE Jr, Lee D, Ali SM, Nadeau DP, Grygielko ET, Laping NJ, Brooks DP (2001) Role of caspases in human renal proximal tubular epithelial cell apoptosis. Eur J Pharmacol 433(2–3):135–140

    Article  PubMed  CAS  Google Scholar 

  • Zager RA (1989) Studies of mechanisms and protective maneuvers in myoglobinuric acute renal injury. Lab Invest 60(5):619–629

    PubMed  CAS  Google Scholar 

  • Zager RA (1996) Rhabdomyolysis and myohemoglobinuric acute renal failure. Kidney Int 49(2):314–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported as Project TUBAB 2011-41 by Trakya University Research Center, Edirne, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman Ayvaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayvaz, S., Aksu, B., Kanter, M. et al. Preventive effects of hyperbaric oxygen treatment on glycerol-induced myoglobinuric acute renal failure in rats. J Mol Hist 43, 161–170 (2012). https://doi.org/10.1007/s10735-012-9391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9391-5

Keywords

Navigation