Skip to main content
Log in

Biped Locomotion Control through a Biomimetic CPG-based Controller

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Modern concepts of motor learning favour intensive training directed to the neural networks stimulation and reorganization within the spinal cord, the central pattern generator, by taking advantage of the neural plasticity. In the present work, a biomimetic controller using a system of adaptive oscillators is proposed to understand the neuronal principles underlying the human locomotion. A framework for neural control is presented, enabling the following contributions: a) robustness to external perturbations; b) flexibility to variations in the environmental constraints; and c) incorporation of volitional mechanisms for self-adjustment of gait dynamics. Phase modulation of adaptive oscillators and postural balance control are proposed as main strategies for stable locomotion. Simulations of the locomotion model with a biped robot in closed-loop control are presented to validate the implemented neuronal principles. Specifically, the proposed system for online modulation of previous learnt gait patterns was verified in terrains with different slopes. The proposed phase modulation method and postural balanced control enabled robustness enhancement considering a broader range of slope angles than recent studies. Furthermore, the system was also verified for tilted ground including different slopes in the same experiment and uneven terrain with obstacles. Adaptive Frequency Oscillators, under Dynamic Hebbian Learning Adaptation mechanism, are proposed to build a hierarchical control architecture with spinal and supra spinal centers with multiple rhythm-generating neural networks that drive the legs of a biped model. The proposed neural oscillators are based on frequency adaptation and can be entrained by sensory feedback to learn specific patterns. The proposed biomimetic controller intrinsically generates patterns of rhythmic activity that can be induced to sustain CPG function by specific training. This method provides versatile control, paving the way for the design of experimental motor control studies, optimal rehabilitation procedures and robot-assisted therapeutic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, N.: Walking on downslope and upslope terrains, movie1, http://asbg.dei.uminho.pt/movies (2012a)

  2. Alves, N.: Obstacle avoidance through internal modulation, movie2, http://asbg.dei.uminho.pt/movies (2012b)

  3. Aoi, S., Tsuchiya, K.: Locomotion control of a biped robot using nonlinear oscillators. Auton. Robot. 19(3), 219–232 (2005)

    Article  Google Scholar 

  4. Aoi, S., Ogihara, N., Funato, T., Sugimoto, Y., Tsuchiya, K.: Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biol. Cybern. 102(5), 373–387 (2010). ISSN 0340-1200

    Article  Google Scholar 

  5. Arena, P., Fortuna, L., et al.: An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics a publication of the IEEE Systems Man and Cybernetics Society 34(4), 1823–1837 (2004)

    Article  Google Scholar 

  6. Ayers, J., Davis, J.L., Rudolph, A.: Neurotechnology for Biomimetic Robots. USA 1714 (2002)

  7. Biswas, A., Lemaire, E.D., et al.: Dynamic gait stability index based on plantar pressures and fuzzy logic. J. Biomech. 41(7), 1574–1581 (2008)

    Article  Google Scholar 

  8. Buchli, J., Righetti, L., et al.: A dynamical systems approach to learning: a frequency-adaptive hopper robot. In: Proceedings of the ECAL’05, pp 210–220. Springer, UK (2005)

  9. Buchli, J., Righetti, L., et al.: Engineering entrainment and adaptation in limit cycle systems. Biol. Cybern. 95(6), 645–664 (2006a)

    Article  MATH  Google Scholar 

  10. Buchli, J., Righetti, L., et al.: Adaptive frequency oscillators applied to dynamic walking ii. Adapting to resonant body dynamics. In: Proceedings of Dynamic Walking 2006 (2006b)

  11. Buchli, J., Righetti, L., et al.: Frequency analysis with coupled nonlinear oscillators. Physica D: Nonlinear Phenomena 237(13), 1705–1718 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Buschges, A., Borgmann, A.: Network modularity: back to the future in motor control. Curr. Biol. 23(20), R936–938 (2013)

    Article  Google Scholar 

  13. Calancie, B., Needham-Shropshire, B., et al.: Involuntary stepping after chronic spinal cord injury. evidence for a central rhythm generator for locomotion in man. Brain J. Neurol. 117(Pt 5), 1143–1159 (1994) http://www.ncbi.nlm.nih.gov/pubmed/7953595

    Article  Google Scholar 

  14. Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped robot. Robotica 19(5), 557–569 (2001)

    Article  Google Scholar 

  15. Chevallereau, C., Abba, G., et al.: Rabbit: a testbed for advanced control theory. IEEE Control. Syst. Mag. 23(5), 57–79 (2003)

    Article  Google Scholar 

  16. Chow, C.K., Jacobson, D.H.: Studies of human locomotion via optimal programming. Math. Biosci. 10(3-4), 239–306 (1971)

    Article  MATH  Google Scholar 

  17. Clark, M.M., Anderson, G.T.: A Nonlinear Oscillator-based Technique for Implementing Obstacle Avoidance in an Autonomous Mobile Robot, chapter 4, pp. 29–35. Space and Robotics 1998, USA (1998)

  18. Dekker, M.H.P.: Zero-Moment Point for Stable Biped Walking. Technical Report, Eindhoven, University of Technology (2009)

  19. Dietz, V.: Rehabilitation of Locomotor Function After a Central Motor Lesion, page online. Center for international rehabilitation research information and exchange, USA (2012)

  20. Dimitrijevic, M.R., Gerasimenko, Y., et al.: Evidence for a spinal central pattern generator in humans. Ann. N. Y. Acad. Sci. 860(1), 360–376 (1998a) http://www.ncbi.nlm.nih.gov/pubmed/9928325

    Article  Google Scholar 

  21. Dimitrijevic, M.R., Gerasimenko, Y., Pinter, M.M.: Evidence for a spinal central pattern generator in humans. Ann. N. Y. Acad. Sci. 860(1), 360–376 (1998b). ISSN 1749– 6632

    Article  Google Scholar 

  22. Duysens, J., et al.: A walking robot called human: lessons to be learned from neural control of locomotion. J. Biomech. 35(4), 447–453 (2002)

    Article  Google Scholar 

  23. Duysens, J., Van de Crommert, H.W.: Neural control of locomotion; the central pattern generator from cats to humans. Gait Posture 7(2), 131–141 (1998)

    Article  Google Scholar 

  24. Full, R.J., Kubow, T., et al.: Quantifying dynamic stability and maneuverability in legged locomotion. Integr. Comp. Biol. 42, 149–157 (2002)

    Article  Google Scholar 

  25. Griener, A., Dyck, J., Goscnach, S.: Network modularity: back to the future in motor control. Neuroscience 250, 644–650 (2013)

    Article  Google Scholar 

  26. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Autom. Control 46(1), 51–64 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Guijarro, J.M.: Simulation of Biped Walking: Implementing Taga’s Model in Pyode. Technical Report, The Autonomous Systems Laboratory, Universidad Politcnica de Madrid (2008)

  28. Haavisto, A.O., Hyotyniemi, B.H.: Simulation Tool of a Biped Walking Robot Model. Technical report, Helsinki Universit. Technol. Control Eng. Lab. (2004)

  29. Haavisto, O., Hyotyniemi, H.: Clustered Regression Control of a Biped Robot Model, Humanoid Robots: New Developments. InTech, Austria (2007)

    Google Scholar 

  30. Habib, M.K., Guang, L.L., et al.: Bipedal locomotion control via cpgs with coupled nonlinear oscillators. In: 4th IEEE International Conference on Mechatronics, ICM2007, pp 1–6. IEEE, Japan (2007)

  31. Hardt, M., Kreutz-Delgado, K., et al.: Optimal biped walking with a complete dynamical model. Proceedings of the 38th IEEE Conference on Decision and Control Cat No99CH36304 3, 2999–3004 (1999)

    Google Scholar 

  32. Horak, F.B., Nashner, L.M.: Central programming of postural movements: adaptation to altered support-surface configurations. J. Neurophysiol. 55(6), 1369–1381 (1986) [http://www.ncbi.nlm.nih.gov/ pubmed/3734861]

    Google Scholar 

  33. Huang, Q.H.Q., Yokoi, K., et al.: Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation 3, 280–289 (2001)

    Article  Google Scholar 

  34. Hurmuzlu, Y., Gnot, F., Brogliato, B.: Modeling, stability and control of biped robots–a general framework. Autom. 40(10), 1647–1664 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  36. Kajita, S., Tani, K.: Experimental study of biped dynamic walking. IEEE Control. Syst. Mag. 16(1), 13–19 (1996)

    Article  Google Scholar 

  37. Kimura, H., Tsuchiya, K., Ishiguro, A., Witte, H.: Adaptive motion of animals and machines. N. Y. 21(2), 141–154 (2006)

    Google Scholar 

  38. MacKay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82(1), 69–83 (2002)

    Google Scholar 

  39. Matos, V., Santos, C.P.: Central pattern generators with phase regulation for the control of humanoid locomotion. In: IEEE-RAS International Conference on Humanoid Robots, p 2012. Business Innovation Center Osaka , Japan

  40. Maufroy, C., Nishikawa, T., Kimura, H.: Stable dynamic walking of a quadruped robot Kotetsu; using phase modulations based on leg loading/unloading. In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp 5225–5230 (2010a)

  41. Maufroy, C., Kimura, H., Takase, K.: Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Auton. Robot. 28 (3), 331–353 (2010b). ISSN 0929-5593

    Article  Google Scholar 

  42. Molinari, M.: Plasticity properties of CPG circuits in humans: impact on gait recovery. Brain Res. Bull. 78, 22–25 (2009)

    Article  Google Scholar 

  43. Nakanishi, J., Morimoto, J., et al.: Learning from demonstration and adaptation of biped locomotion with dynamical movement primitives. Learning 47(2-3), 79–91 (2004)

    Google Scholar 

  44. Nishiwaki, K.H., Sugihara, T., et al.: Online mixture and connection of basic motions for humanoid walking control by footprint specification. In: Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation Cat No01CH37164, vol. 4, pp 4110–4115 (2001)

  45. Pratt, J.E., Chee-Meng, C., et al.: Virtual model control: an intuitive approach for bipedal locomotion. I. J. Robotic Res. 20, 129–143 (2001)

    Article  Google Scholar 

  46. Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proceedings 2006 IEEE ICRA, pp 1585–1590. IEEE, USA (2006)

  47. Righetti, L., Ijspeert, A.J.: Pattern generators with sensory feedback for the control of quadruped locomotion. In: 2008 IEEE International Conference on Robotics and Automation, pp 819–824 (2008a)

  48. Righetti, L., Buchli, J., et al.: From dynamic hebbian learning for oscillators to adaptive central pattern generators. In: Proceedings of 3rd International Symposium on Adaptive Motion in Animals and Machines – AMAM 2005, Germany. Verlag ISLE, Ilmenau. Full paper on CD (2005)

  49. Righetti, L., Buchli, J., et al.: Dynamic hebbian learning in adaptive frequency oscillators. Phys. D. 216, 269–281 (2006a)

    Article  MATH  MathSciNet  Google Scholar 

  50. Righetti, L., Buchli, J., et al.: Adaptive frequency oscillators applied to dynamic walking i. programmable central pattern generators. Physica, 2006–2006 (2006b)

  51. Righetti, L., Ijspeert, A.J.: Pattern generators with sensory feedback for the control of quadruped locomotion. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp 819–824 (2008b)

  52. Rinderknecht, M.D., Delaloye, F.A., et al.: Assistance using adaptive oscillators: Sensitivity analysis on the resonance frequency. In: Proceedings of the International Conference on Rehabilitation Robotics, Zurich, Switzerland. IEEE, Switzerland (2011a)

  53. Rinderknecht, M.D., Delaloye, F.A., et al.: Assistance using adaptive oscillators: robustness to errors in the identification of the limb parameters. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp 1–6 (2011b)

  54. Ronsse, R., Vitiello, N., et al.: Adaptive oscillators with human-in-the-loop: proof of concept for assistance and rehabilitation. In: Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (2010)

  55. Ruffieux, S., Righetti, L.: Adaptive locomotion controller for a quadruped robot. Technical report, Ecole Polytechnique Federale de Lausanne (EPDL) (2007)

  56. Schaal, S., Peters, J., et al.: Learning movement primitives. Mot. Control. 15(1), 1–10 (2004)

    Google Scholar 

  57. Silva, F.M., Machado, J.A.T.: Kinematic Aspects of Robotic Biped Locomotion Systems, vol. 1, pp 266–272. IEEE, Hungary (1997)

    Google Scholar 

  58. Spitz, J., Or, Y., et al.: Towards a biologically inspired open loop controller for dynamic biped locomotion. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), 2011, pp 503 –508. IEEE, Thailand (2011)

  59. Taga, G.: A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol. Cybern. 78(1), 9–17 (1998)

    Article  MATH  Google Scholar 

  60. Taga, G.: Nonlinear dynamics of human locomotion: from real-time adaptation to development. In: Kimura, H., Tsuchiya, K., Ishiguro, A., Witte, H. (eds.) Adaptive Motion of Animals and Machines, pp 189–204. Springer, Tokyo, Japan (2006)

  61. Tsuchiya, K., Aoi, S., et al.: Locomotion control of a biped locomotion robot using nonlinear oscillators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003, vol. 2, pp 1745–1750. IEEE, USA (2003)

  62. Veskos, P., Demiris, Y.: Developmental acquisition of entrainment skills in robot swinging using van der pol oscillators. Biol. Cybern. 2, 87–93 (2005)

    Google Scholar 

  63. Vukobratovic, M., Borovac, B.: Zero-moment point- thirty five years of its life. Int. J. Humanoid Rob. 1, 157–173 (2004)

    Article  Google Scholar 

  64. Wight, D.L.: A Foot Placement Strategy for Robust Bipedal Gait Control. Canadian theses. University of waterloo, Canada, 2008. ISBN 9780494433683

  65. Wirz, M., Bastiaenen, C., de Bie, R., Dietz, V.: Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized controlled multicenter trial. BMC Neurol. 11(1), 60 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina P. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, C.P., Alves, N. & Moreno, J.C. Biped Locomotion Control through a Biomimetic CPG-based Controller. J Intell Robot Syst 85, 47–70 (2017). https://doi.org/10.1007/s10846-016-0407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0407-3

Keywords

Navigation