Skip to main content
Log in

Temperature effect on the complex formation between tricyclic antidepressant drugs (amitriptyline or imipramine) and hydroxypropyl-β-cyclodextrin in water

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The molecular encapsulation of two tricyclic antidepressants (TCA) drugs, amitriptyline and imipramine, by a glycosidic receptor, 6-hydroxypropyl-β-cyclodextrin (HPBCD), has been carried out in water solution by means of conductometric studies at different temperatures ranging from 15 °C to 45 °C. Conductivity measurements of aqueous solutions of the drug were performed: (i) in the absence of HPBCD, as a function of drug concentration; and (ii) in the presence of HPBCD, as a function of HPBCD concentration. Both drugs, amitriptyline and imipramine, form inclusion complexes characterized by a 1:1 stoichiometry and an association constant (\(K_{\rm HPBCD:TCAH^+}\)) in the range of 500–1200 M−1. The ionic molar conductivities at infinite dilution of the free (\(\lambda_{\rm TCAH^+}^0\)) and complexed (\(\lambda_{\rm HPBCD:TCAH^+}^0\)) drugs have been calculated from these conductivity data as well. From the dependency of the association constant on temperature, changes on the enthalpy, ΔH 0, entropy, ΔS 0, and heat capacity at constant pressure, \(\Delta C_{\rm p}^{0}\) , have been determined. This thermodynamic information, which reveals that the complexes formed by HPBCD and the antidepressant drugs, AMYTPH+ and IPRH+, are enthalpy driven at T ≥ 25 °C but entropy driven at T < 25 °C, points to the contribution of van der Waals interactions, hydrophobic effect and solvent reorganization, as the main driven forces promoting the interaction. The analysis of these association processes was also used to elucidate the potential viability of using HPBCD as a vector of these antidepressant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bowman, W.C., Rand, M.J.: Textbook of Pharmacology. Blackwell Sci. Pubs., Cambridge (1990)

    Google Scholar 

  2. Hall, C.M., Nugent, R.A.: Encyclopedia of Chemical Technology, vol 2. John Wiley & Sons, New York (1992)

    Google Scholar 

  3. Atwood, J.L., Davies, J.E.D., MacNicol, D.D., Vögtle, F.: Comprehensive Supramolecular Chemistry. Pergamon, Oxford (1996)

    Google Scholar 

  4. Connors, K.A.: The stability of cyclodextin complexes in solution. Chem. Rev. 97:1325–1357 (1997)

    Article  CAS  Google Scholar 

  5. D’Souza, V.T., Lipkowitz, K.B.: Cyclodextrins. Chem. Rev. 98:1741 (1998)

    Article  CAS  Google Scholar 

  6. Thompson, D.O.: Cyclodextrin-enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Therap. Drug Carrier Syst. 14:1–104 (1997)

    CAS  Google Scholar 

  7. Duchene, D., Wouessidjewe, D., Ponchel, G.: Cyclodextrins and carrier systems. J. Control.Release 62: 263–268 (1999)

    Article  CAS  Google Scholar 

  8. Junquera, E., Aicart, E.: A fully computerized technique to measure conductivity in liquid mixtures. Rev. Sci. Instrum. 65: 2672–2674 (1994)

    Article  CAS  Google Scholar 

  9. Deranleau, D.A.: Theory of the measurement of weak molecular complexes. I. General considerations. J. Am. Chem. Soc. 91:4044–4049 (1969)

    Article  CAS  Google Scholar 

  10. Junquera, E., Aicart, E.: Potentiometric study of the encapsulation of ketoprophen by hydroxypropyl-β-cyclodextrin. Temperature, solvent, and salt effects. J. Phys. Chem. B 101:7163–7171 (1997)

    Article  CAS  Google Scholar 

  11. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworth, London (1965)

    Google Scholar 

  12. Tinner, U.: Electrodes in Potentiometry. Metrohm, Herisau (1989)

    Google Scholar 

  13. Brüll, L.: Gazz. Chim. Ital. 64: 624 (1934)

    Google Scholar 

  14. Junquera, E., Martin-Pastor, M., Aicart, E.: Molecular encapsulation of flurbiprophen and/or ibuprophen by hydroxypropyl-β-cyclodextrin in aqueous solution. Potentiometric and molecular modeling studies. J. Org. Chem. 63:4349–4358 (1998)

    Article  CAS  Google Scholar 

  15. Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins.2. In vivo drug delivery. J. Pharm. Sci. 85:1142–1169 (1996)

    Article  CAS  Google Scholar 

  16. Junquera, E., Peña, L., Aicart, E.: Conductivity studies of the molecular encapsulation of sodium perfluorooctanoate by β-cyclodextrin. J. Incl. Phenom. Mol. Recogn. Chem. 24: 233–239(1996)

    Article  CAS  Google Scholar 

  17. Junquera, E., Peña, L., Aicart, E.: Binding of sodium salicylate by β-cyclodextrin or 2,6-di-O-methyl-β-cyclodextrin in aqueous solution. J. Pharm. Sci. 87: 86–90 (1998)

    Article  CAS  Google Scholar 

  18. Junquera, E., Romero, J.C., Aicart, E.: Behavior of tricyclic antidepressants in aqueous solution: self-aggregation and association with β-cyclodextrin. Langmuir 17:1826–1832 (2001)

    Article  CAS  Google Scholar 

  19. Junquera, E., Peña, L., Aicart, E.: A conductimetric study of the interaction of β-cyclodextrin or hydroxypropyl-β-cyclodextrin with dodecyltrimethylammonium bromide in water solution. Langmuir 11: 4685–4690 (1995)

    Article  CAS  Google Scholar 

  20. Peña, L., Junquera, E., Aicart, E.: Ultrasonic study of the molecular encapsulation and the micellization processes of dodecylethyldimethylammonium bromide-water solutions in the presence of β-cyclodextrin or 2,6-di-O-methyl-β-cyclodextrin. J. Solution Chem. 24: 1075–1091 (1995)

    Article  Google Scholar 

  21. Junquera, E., Peña, L., Aicart, E.: Micellar behavior of the aqueous solutions of dodecylethyldimethylammonium bromide.A characterization study in the presence and abscence of hydroxypropyl-β-cyclodextrin. Langmuir 13:219–224 (1997)

    Article  CAS  Google Scholar 

  22. Sigurskjold, B.W., Bundle, D.R.: Thermodynamics of oligosaccharide to a monoclonal antibodi specific for a salmonella O-antigen point hydrophobic interactions in the binding site. J. Biol. Chem. 267: 8371–8376 (1992)

    CAS  Google Scholar 

  23. Bains, G., Lee, R.T., Lee, Y.C., Freire, E.: Microcalorimetric study of wheat germ agglutinin binding to N-acetylglucosamine and its oligomers. Biochemistry 31:12624–12628 (1992)

    Article  CAS  Google Scholar 

  24. Rekharsky, M.V., Schwarz, F.P., Tewari, Y.B., Goldberg, R.N., Tanaka, M., Yamashoji, Y.: Thermodynamic and NMR study of the interactions of cyclodextrins with cyclohexane derivatives. J. Phys. Chem. 98: 4098–4103 (1994)

    Article  CAS  Google Scholar 

  25. Harrison, J.C., Eftink, M.R.: Cyclodextrin-adamantanecarboxylate inclusion complexes: a model system for the hydrophobic effect. Biopolymers 21: 1153–1166 (1982)

    Article  CAS  Google Scholar 

  26. Diederich, F., Smithrud, D.B., Sanford, E.M., Wyman, T.B., Ferguson, S.B., Carcanague, D.R., Chao, I., Houk, K.N.: Solvent effects in molecular recognition. Acta Chem. Scand. 46: 205–215 (1992)

    Article  CAS  Google Scholar 

  27. Smithrud, D.B., Wyman, T.B., Diederich, F.: Enthalpically driven cyclophane-arene inclusion complexation: solvent-dependent calorimetric studies. J. Am. Chem. Soc. 113: 5420–5426 (1991)

    Article  CAS  Google Scholar 

  28. Stauffer, D.A., Barrans, R.E., Dougherty, D.A.: Concerning the thermodynamics of molecular recognition in aqueous and organic media. Evidence for significant heat capacity effects. J. Org. Chem. 55: 2762–2767 (1990)

    Article  CAS  Google Scholar 

  29. Chervenak, M.C., Toone, E.J.: A direct measure of the contribution of solvent reorganization to the enthalpy of ligand binding. J. Am. Chem. Soc. 116: 10533–10539 (1994)

    Article  CAS  Google Scholar 

  30. Toone, E.J.: Structure and energetics of protein-carbohydrate complexes. Curr. Opin. Struct. Biol. 4: 719–728 (1994)

    Article  CAS  Google Scholar 

  31. Hayashi, T., Miyahara, T., Koide, N., Kato, Y., Masuda, H., Ogoshi, H.: Molecular recognition of ubiquinone analogues. Specific interaction between quinone and functional porphyrin via multiple hydrogen bonds. J. Am. Chem. Soc. 119: 7281–7290 (1997)

    Article  CAS  Google Scholar 

  32. Hobza, P., Zahradnik, R.: Intermolecular Complexes. Elsevier, New York (1988)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Spanish Ministry of Education, Project No. BQU2005–1106, and to the Comunidad Autónoma of Madrid, Project UCM-CAM (ref. 910447) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Junquera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cano, J., Rodriguez, A., Aicart, E. et al. Temperature effect on the complex formation between tricyclic antidepressant drugs (amitriptyline or imipramine) and hydroxypropyl-β-cyclodextrin in water. J Incl Phenom Macrocycl Chem 59, 279–285 (2007). https://doi.org/10.1007/s10847-007-9328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9328-x

Keywords

Navigation