Skip to main content

Advertisement

Log in

Nickel ion release from orthodontic NiTi wires under simulation of realistic in-situ conditions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The increasing use of nickel containing devices in orthodontics and the growing prevalence of nickel allergy in the population significantly increases the interest in biocompatibility studies of these devices. The decisive factor determining the biocompatibility of orthodontic wires is their corrosion behaviour. Therefore seven nickel titanium levelling arches, one titanium molybdenum, a cobalt chromium and three stainless steel wires were analysed with respect to their corrosion behaviour under realistic conditions. Potentiostatic tests to determine rupture potentials in artificial saliva and static immersion tests in artificial saliva (AS) or lactic acid (LA), as well as immersion tests with mechanical, thermal and combined mechanical and thermal stresses were performed. Subsequently, the surfaces of the wires were investigated employing scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and the nickel release into the corrosion media of the specimens was measured with inductively coupled plasma mass spectrometry (ICP-MS). The results yield information not only about the relative corrosion tendency of the wires under in vitro conditions but also give a quantitative estimation about the nickel ion release of the orthodontic wires during in vivo treatment. Generally, the maximum release of nickel ions was two orders of magnitude below the daily dietary intake level. Mechanical and thermal loading increases nickel release in the immersion tests by a factor of 10 to 30. Two NiTi wires (Dentaurum Tensic, Forestadent Titanol Low Force) examined showed lower rupture potentials and a higher tendency towards corrosion in the immersion tests than the others due to their surface composition. However these differences are levelled off by long-term mechanical and thermal loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. ANDREASEN and T. B. HILLEMAN, J. Am. Dent. Assoc. 82 (1971) 1373.

    PubMed  Google Scholar 

  2. W. J. BUEHLER, J. V. GILFRICH and R. C. WILEY, J. Appl. Phys. 34 (1963) 1457.

    Article  Google Scholar 

  3. J. P. MOFFA, Calif. Dent. Assoc. J. 12 (1984) 45.

    Google Scholar 

  4. DEUTSCHE FORSCHUNGSGEMEINSCHAFT: “MAK- und BAT-Werte-Liste 2000”. Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe, Mitteilung 35 Wiley-VCH, Weinheim (2000).

  5. A. HARTEL, C. BOURAUEL, D. DRESCHER and G. P. F. SCHMUTH, Schweiz. Monatsschr. Zahnmed. 102 (1992) 1195.

    PubMed  Google Scholar 

  6. H. J. RAITHEL, Arbeitsmed. Sozialmed. Präventivmed. 22 (1987) 268.

    Google Scholar 

  7. Idem., ibid. 22 (1987) 301.

    Google Scholar 

  8. N. K. VEIEN and T. MENNE, Seminar on Dermatology 9 (1990) 197.

    Google Scholar 

  9. O. B. CHRISTENSEN and H. MÖLLER, Contact Dermatitis 1 (1975) 129.

    PubMed  Google Scholar 

  10. A. SERTOLI, P. LOMBARDI and S. FRANCALANCI, Gior. It. Derm. Vener. 120 (1985) 213.

    Google Scholar 

  11. P. G. BEDELLO, M. GOITRE and D. CANE, ibid. 120 (1985) 293.

    Google Scholar 

  12. E. CRONIN, A. DE MICHIEL and S. S. BROWN, Ann. Clin. Lab. Sci. 11 (1981) 91.

    Google Scholar 

  13. J. RODUNER, E. HAUDENSCHILD-FALB and E. KUNZ, Hautarzt 38 (1987) 262.

    PubMed  Google Scholar 

  14. G. D. NIELSEN, U. SÖDERBERG, P. J. JøRGENSEN, D. M. TEMPLETON, S. N. RASMUSSEN, K. E. ANDERSEN and P. GRANDJEAN, Toxicol. and Appl. Pharm. 154 (1999) 67.

    Article  Google Scholar 

  15. D. J. GAWGRODGER, S. W. COOK and G. S. FELL, Br. J. Dermatol. 115 (1986) 33.

    Google Scholar 

  16. N. K. VEIEN, E. BORCHHORST, T. HATTEL and G. LAURBERG, Cont. Dermat. 30 (1994) 210.

    Google Scholar 

  17. L. TROMBELLI, A. VIRGILI, M. CORAZZA and R. LUCCI, ibid. 27 (1992) 259.

    Google Scholar 

  18. N. K. VEIEN, T. HATTEL and G. LAURBERG, J. Am. Acad. Dermatol. 29 (1993) 1002.

    PubMed  Google Scholar 

  19. J. GEIS-GERSTDORFER and H. WEBER, Dtsch. Zahnärztl. Z. 40 (1985) 87.

    PubMed  Google Scholar 

  20. J. M. MEYER and J.-N. NALLY, J. Dent. Res. 54(1) (1975) 678 (Abstract).

    Google Scholar 

  21. K. KAABER, N. K. VEIEN and J. C. TJELL, Br. J. Dermatol. 98(1978) 197.

    PubMed  Google Scholar 

  22. H. A. SCHRÖDER, J. J. BALASSA and I. H. TIPTON, J. Chronic Dis. 15(1962) 51.

    Article  PubMed  Google Scholar 

  23. H. HUANG, Y. CHIU, T. LEE, S. WU, H. YANG, K. SU and C. HSU, Biomaterials 24 (2003) 3585.

    Article  PubMed  Google Scholar 

  24. F. WIDU, D. DRESCHER, R. JUNKER and C. BOURAUEL, J. Mat. Sci. Mat. Med. 10 (1999) 275.

    Article  Google Scholar 

  25. P. NEUMANN and C. BOURAUEL, ibid. 13 (2002) 141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bourauel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, M., Brück, A., Scully, T. et al. Nickel ion release from orthodontic NiTi wires under simulation of realistic in-situ conditions. J Mater Sci 40, 3659–3667 (2005). https://doi.org/10.1007/s10853-005-0448-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-0448-7

Keywords

Navigation