Skip to main content

Advertisement

Log in

The distribution of carbonate in enamel and its correlation with structure and mechanical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The correlation of carbonate content with enamel microstructure (chemical and crystal structure) and mechanical properties was evaluated via linear mapping analyses by Raman microspectroscopy and nanoindentation. Mappings started at the outer enamel surface and ended in the inner enamel near the dentin-enamel junction (DEJ) in lingual and buccal cervical and cuspal regions. The carbonate peak intensity at 1070 cm−1 gradually increased from outer to inner enamel. Moreover, the phosphate peak width, as measured by the full width at half maximum of the peak at 960 cm−1, also increased, going from ~9 cm−1 in outer enamel to ~13 cm−1 in enamel adjacent to the DEJ, indicating a decrease in the degree of crystallinity of hydroxyapatite from outer to inner enamel. In contrast, Young’s modulus decreased from 119 ± 12 to 80 ± 19 GPa across outer to inner enamel with a concomitant decrease in enamel hardness from 5.9 ± 1.4 to 3.5 ± 1.3 GPa. There were also significant correlations between carbonate content and associated crystallinity with mechanical properties. As carbonate content increased, there was an associated decrease in crystallinity and both of these changes correlated with decreased modulus and hardness. Collectively, these results suggest that enamel carbonate content and the associated change in the crystal structure of hydroxyapatite, i.e., degree of crystallinity, may have a direct effect on enamel mechanical properties. The combination of Raman microspectroscopy and nanoindentation proved to be an effective approach for evaluating the microstructure of enamel and its associated properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nanci A (2003) In: Nanci A (ed) Ten cate’s oral histology-development, structure, and function. Mosby, St Louis

    Google Scholar 

  2. Driessens FCM, Verbeeck RMH (1990) In: Driessens FCM, Verbeeck RMH (eds) Biominerals. CRC Press, Boca Raton

    Google Scholar 

  3. Brudevold F, Reda A, Aasenden R, Bakhos Y (1975) Arch Oral Biol 20:667. doi:10.1016/0003-9969(75)90135-1

    Article  CAS  Google Scholar 

  4. Braly A, Darnell LA, Mann AB, Teaford MF, Weihs TP (2007) Arch Oral Biol 52:856. doi:10.1016/j.archoralbio.2007.03.005

    Article  CAS  Google Scholar 

  5. He LH, Swain MV (2008) J Mech Behav Biomed Mater 1:18. doi:10.1016/j.jmbbm.2007.05.001

    Article  Google Scholar 

  6. Lewis G, Nyman JS (2008) J Biomed Mater Res B Appl Biomater 87:286. doi:10.1002/jbm.b.31092

    Google Scholar 

  7. Angker L, Swain MV (2006) J Mater Res 21:1893. doi:10.1557/jmr.2006.0257

    Article  CAS  Google Scholar 

  8. He LH, Swain MV (2009) J Dent 37:596. doi:10.1016/j.jdent.2009.03.019

    Article  CAS  Google Scholar 

  9. Park S, Wang DH, Zhang D, Romberg E, Arola D (2008) J Mater Sci Mater Med 19:2317. doi:10.1007/s10856-007-3340-y

    Article  CAS  Google Scholar 

  10. Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP (2002) Arch Oral Biol 47:281. doi:10.1016/S0003-9969(02)00006-7

    Article  CAS  Google Scholar 

  11. Lee JJW, Morris D, Constantino PJ, Lucas PW, Smith TM, Lawn BR (2010) Acta Biomater 6:4560. doi:10.1016/j.actbio.2010.07.023

    Article  CAS  Google Scholar 

  12. An B, Wang R, Arola D, Zhang D (2012) J Mech Behav Biomed Mater 9:63. doi:10.1016/j.jmbbm.2012.01.009

    Article  Google Scholar 

  13. Sydney-Zax M, Mayer I, Deutsch D (1991) J Dent Res 70:913. doi:10.1177/00220345910700051001

    Article  CAS  Google Scholar 

  14. SonJu Clasen AB, Ruyter IE (1997) Adv Dent Res 11:523. doi:10.1177/08959374970110042101

  15. LeGeros RZ, Sakae T, Bautista C, Retino M, LeGeros JP (1996) Adv Dent Res 10:225. doi:10.1177/08959374960100021801

    Article  CAS  Google Scholar 

  16. Sakae T (1988) Arch Oral Biol 33:707. doi:0003-9969(88)90003-9

    Article  CAS  Google Scholar 

  17. Baena JR, Lendl B (2004) Curr Opin Chem Biol 8:534. doi:10.1016/j.cbpa.2004.08.014

    Article  CAS  Google Scholar 

  18. Pappas D, Smith BW, Winefordner JD (2000) Talanta 51:131. doi:10.1016/s0039-9140(99)00254-4

    Article  CAS  Google Scholar 

  19. Tsuda H, Arends J (1997) Adv Dent Res 11:539. doi:10.1177/08959374970110042301

    Article  CAS  Google Scholar 

  20. Weatherell JA, Robinson C, Hiller CR (1968) Caries Res 2:1. doi:10.1159/000259538

    Article  CAS  Google Scholar 

  21. Parayanthal P, Pollak FH (1984) Phys Rev Lett 52:1822. doi:10.1103/PhysRevLett.52.1822

    Article  CAS  Google Scholar 

  22. Pucéat E, Reynard B, Lécuyer C (2004) Chem Geol 205:83. doi:10.1016/j.chemgeo.2003.12.014

    Article  Google Scholar 

  23. Freeman JJ, Wopenka B, Silva MJ, Pasteris JD (2001) Calcif Tissue Int 68:156. doi:10.1007/s002230001206

    Article  CAS  Google Scholar 

  24. Tesch W, Eidelman N, Roschger P, Goldenberg F, Klaushofer K, Fratzl P (2001) Calcif Tissue Int 69:147

    Article  CAS  Google Scholar 

  25. Walker MP, Fricke BA (2006) In: Akay M (ed) Wiley encyclopedia of biomedical engineering. Wiley, Hoboken

    Google Scholar 

  26. White SN, Paine ML, Luo W, Sarikaya M, Fong H, Yu Z et al (2000) J Am Ceram Soc 83:238. doi:10.1111/j.1151-2916.2000.tb01181.x

    Article  CAS  Google Scholar 

  27. Zaslansky P, Friesem AA, Weiner S (2006) J Struct Biol 153:188. doi:10.1016/j.jsb.2005.10.010

    Article  CAS  Google Scholar 

  28. Suresh S (2001) Science 292:2447. doi:10.1126/science.1059716

    Article  CAS  Google Scholar 

  29. Yurkstas AA (1965) J Prosthet Dent 15:248. doi:10.1016/0022-3913(65)90094-6

    Article  CAS  Google Scholar 

  30. Ferrario VF, Sforza C, Zanotti G, Tartaglia GM (2004) J Dent 32:451. doi:10.1016/j.jdent.2004.02.009

    Article  Google Scholar 

  31. Spears IR (1997) J Dent Res 76:1690. doi:10.1177/00220345970760101101

    Article  CAS  Google Scholar 

  32. Saber-Samandari S, Gross KA (2009) Acta Biomater 5:2206. doi:10.1016/j.actbio.2009.02.009

    Article  CAS  Google Scholar 

  33. Darnell LA, Teaford MF, Livi KJT, Weihs TP (2010) Am J Phys Anthropol 141:7. doi:10.1002/ajpa.21126

    Google Scholar 

  34. Zapanta-Legeros R (1965) Nature 206:403. doi:10.1038/206403a0

    Article  CAS  Google Scholar 

  35. Gron P, Spinelli M, Trautz O, Brudevold F (1963) Arch Oral Biol 8:251. doi:10.1016/0003-9969(63)90016-5

    Article  CAS  Google Scholar 

  36. Pan H, Darvell BW (2010) Cryst Growth Des 10:845. doi:10.1021/cg901199h

    Article  Google Scholar 

  37. Sternlieb MP, Pasteris JD, Williams BR, Krol KA, Yoder CH (2010) Polyhedron 29:2364. doi:10.1016/j.poly.2010.05.001

    Article  CAS  Google Scholar 

  38. Xu C, Karan K, Yao X, Wang Y (2009) J Raman Spectrosc 40:1780. doi:10.1002/jrs.2320

    Article  Google Scholar 

  39. LeGeros RZ, Trautz OR, LeGeros JP, Klein E, Shirra WP (1967) Science 155:1409. doi:10.1126/science.155.3768.1409

    Article  CAS  Google Scholar 

  40. Teraoka K, Ito A, Maekawa K, Onuma K, Tateishi T, Tsutsumi S (1998) J Dent Res 77:1560. doi:10.1177/00220345980770071201

    Article  CAS  Google Scholar 

  41. Robinson C, Kirkham J, Brookes SJ, Bonass WA, Shore RC (1995) Int J Dev Biol 39:145

    CAS  Google Scholar 

  42. Margolis HC, Beniash E, Fowler CE (2006) J Dent Res 85:775. doi:10.1177/154405910608500902

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the USPHS research grant DE021462 from the National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA. We also want to thank Dr. Ying Liu for her assistance with the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary P. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Reed, R., Gorski, J.P. et al. The distribution of carbonate in enamel and its correlation with structure and mechanical properties. J Mater Sci 47, 8035–8043 (2012). https://doi.org/10.1007/s10853-012-6693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6693-7

Keywords

Navigation