Skip to main content

Advertisement

Log in

An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The suitability of Glass Polyalkenoate Cements (GPCs) for orthopaedic applications is retarded by the presence in the glass phase of aluminium, a neurotoxin. Unfortunately, the aluminium ion plays an integral role in the setting process of GPCs and its absence is likely to hinder cement formation. However, the authors have previously shown that aluminium-free GPCs may be formulated based on calcium zinc silicate glasses and these novel materials exhibit significant potential as hard tissue biomaterials. However there is no data available on the structure of these glasses. 29Si MAS-NMR, differential thermal analysis (DTA), X-ray diffraction (XRD), and network crosslink density (CLD) calculations were used to characterize the structure of five calcium zinc silicate glasses and relate glass structure to reactivity. The results indicate that glasses capable of forming Zn-GPCs are predominantly Q2/Q3 in structure with corresponding network crosslink densities greater than 2. The correlation of CLD and MAS-NMR results indicate the primary role of zinc in these simple glass networks is as a network modifier and not an intermediate oxide; this fact will allow for more refined glass compositions, with less reactive structures, to be formulated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. JOKSTAD and A. MJOR, J. Dent., 24 (1996) 309.

    Article  CAS  Google Scholar 

  2. J. A. WILLIAMS and R. W. BILLINGTON, Journal of Oral Rehabilitation, 16 (1989) 475.

    CAS  Google Scholar 

  3. A. D. WILSON and J. W. NICHOLSON, “Acid-base cements, their biomedical and industrial applications.” (Cambridge University Press 1993.)

  4. J. W. NICHOLSON, Biomaterials, 19 (1998) 485.

    Article  CAS  Google Scholar 

  5. A. O. AKINMADE and J. W. NICHOLSON, J. Mat. Sci. Mat. Med., 4 (1993) 95.

    Article  CAS  Google Scholar 

  6. S. G. GRIFFIN and R. G. HILL, Biomaterials, 20 (1999) 1579.

    Article  CAS  Google Scholar 

  7. D. JULKA and K. D. GILL, Biochemica et Biophysica Acta., 1315 (1996) 47.

    Google Scholar 

  8. G. W. GUO and Y. X. LIANG, Brain Res., 888 (2001) 221.

    Article  CAS  Google Scholar 

  9. L. GANDOLFI, M. P. STELLA, P. ZAMBENEDETTI and P. ZATTA, Biochemica et Biophysica Acta., 1406 (1998) 315.

    CAS  Google Scholar 

  10. P. ZATTA, Coordination chemistry, 228 (2002) 271.

    Article  CAS  Google Scholar 

  11. W. F. FORBES, J. F. GENTLEMAN and C. J. MAXWELL, Experimental Gerontology., 30 (1995).(1) 23.

  12. J. F. GENTLEMAN and W. F. FORBES, Experimental Gerontology, 33 (1998) 141.

    Article  Google Scholar 

  13. S. POLIZZI, E. PIRA, M. FERRARA, B. MASSIMILIANO, A. PAPALEO, R. ALBERA and S. PALMI, NeuroToxicology, 23 (2002) 761.

    Article  CAS  Google Scholar 

  14. C. V. SWEGERT, K. R. DAVE and S. S. KATYARE, Mechanism of aging and development, 112 (1999) 27.

    Article  CAS  Google Scholar 

  15. C. EXLEY, J. Inorganic Biochemistry, 76 (1999) 133.

    Article  CAS  Google Scholar 

  16. P. B. MOORE, J. A. EDWARDSON, I. N. FERRIER, G. A. TAYLOR, D. LETT, S. P. TYRER, J. PHILIP DAY, S. J. KING and J. S. LILLEY, Biol. Psychiatry, 41 (1997) 488.

    Article  CAS  Google Scholar 

  17. G. BABIGHIAN, J. Laryngol. Otol, 106 (1992) 954.

    CAS  Google Scholar 

  18. E. ENGLEBRECHT, et al., J. Bone and Joint Surgery, 82-b (2000).(2) 192.

  19. E. REUSCHE, P. PILZ, G. OBERASCHER, B. LINDNER, R. EGENSPERGER, K. GLOECKNER, E. TRINKA and B. IGLSEDER., Human Pathology, 32 (2001).(10) 1136.

  20. M. DARLING and R. HILL, Biomaterials, 15/4 (1993) 299.

    Google Scholar 

  21. D. BOYD and M. R. TOWLER, J. Mat. Sci. Mat. Med., Accepted (2004).

  22. M. YAMAGUCHI and T. MATSUI, Peptides, 17 (1996).(7) 1207.

  23. J. OVESEN, B. MOLLER-MADSEN, J. S. THOMSEN, G. DANSCHER and L. MOSEKILDE., Bone, 29 (2001) (6) 565.

    Google Scholar 

  24. O. YAMAMOTO, Int. J. Inorganic Materials, 3 (2001) 643.

    Article  CAS  Google Scholar 

  25. E. R. SEGNIT, J. Am. Ceran. Soc., 37 (1954).

  26. A. SULLIVAN and R. G. HILL, J. Mat. Sci., 35 (2000) 1125.

    Article  CAS  Google Scholar 

  27. International standard 9917:1991 (E). Dental Water Based Cements. International organization for Standardization, Case Postale 56, CH-1211, Geneve, Switzerland

  28. J. HENRY, M. R. TOWLER, K. T. STANTON, X. QUEROL and N. MORENO, J. Chem. Tech & Biotech, 79 (2004) 540.

    Article  CAS  Google Scholar 

  29. A. STAMBOULIS, R. G HILL and R. V. LAW, Journal of Non-Crystalline Solids, 333 (2004) 101.

    Article  CAS  Google Scholar 

  30. I. ELGAYER, E. ALIEV, A. R. BOCCACCINI and R. G. HILL, J. Non Cryst. Solids (2004).Accepted.

  31. G. ENGLEHARDT and D. MICHEL, “High-resolution solic state NMR of silicates and zeolites.” (John Wiley and sons 1987).

  32. A. STAMBOULIS, R. V. LAW and R. G. HILL, Biomaterials, 25 (2004) 3907.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Towler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, D., Towler, M.R., Law, R.V. et al. An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy. J Mater Sci: Mater Med 17, 397–402 (2006). https://doi.org/10.1007/s10856-006-8465-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-8465-x

Keywords

Navigation