Skip to main content
Log in

Mechanical properties of open-cell foam synthetic thoracic vertebrae

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study presents comprehensive morphological and mechanical properties (static, dynamic) of open-cell rigid foams (Pacific Research Laboratories Inc. Vashon, WA) and a synthetic vertebral body derived from each of the foams. Synthetic vertebrae were comprised of a cylindrical open-cell foam core enclosed by a fiberglass resin cortex. The open-cell rigid foam was shown to have similar morphology and porosity as human vertebral cancellous bone, and exhibited a crush or fracture consolidation band typical of open-celled materials and cancellous bone. However, the foam material density was 40% lower than natural cancellous bone resulting in a lower compressive apparent strength and apparent modulus in comparison to human bone. During cyclic, mean compression fatigue tests, the synthetic vertebrae exhibited an initial apparent modulus, progressive modulus reduction, strain accumulation and S-N curve behaviour similar to human and animal vertebral cancellous bone. Synthetic open-cell foam vertebrae offer researchers an alternative to human vertebral bone for static and dynamic biomechanical experiments, including studies examining the effects of cement injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. J. HERNANDEZ, G. S. BEAUPRE, T. S. KELLER and D. R. CARTER, Bone. 29 (2001) 74

    Article  CAS  Google Scholar 

  2. J. A. SZIVEK, M. THOMAS and J. B. BENJAMIN, J. Appl. Biomater. 4 (1993) 269

    Article  CAS  Google Scholar 

  3. A. D. HEINER and T. D. BROWN, J. Biomech. 34 (2001) 773

    Article  CAS  Google Scholar 

  4. V. PALISSERY, M. TAYLOR and M. BROWNE, J. Mater. Sci. Mater. Med. 15 (2004) 61

    Article  CAS  Google Scholar 

  5. A. HARTE, N. FLECK and M. ASHBY, Acta. Mater. 47 (1999) 2511

    Article  CAS  Google Scholar 

  6. L. GIBSON, J. Biomech. 38 (2005) 377

    Article  Google Scholar 

  7. T. S. KELLER, J. Biomech. 27 (1994) 1159

    Article  CAS  Google Scholar 

  8. A. PARFITT, C. MATHEWS, A. VILLANUEVA, M. KLEEREKOPER, B. FRAME and D. RAO, J. Clin. Invest. 72 (1983) 1396

    Article  CAS  Google Scholar 

  9. S. BOWMAN, X. GUO, D. CHENG, T. KEAVENY, L. GIBSON, W. HAYES and T. MCMAHON, J. Biomech. Eng. 120 (1998) 647

    Article  CAS  Google Scholar 

  10. T. S. KELLER and M. NATHAN, J. Spinal Disord. 12 (1999) 313

    Article  CAS  Google Scholar 

  11. M. PANJABI, K. TAKATA, V. GOEL, D. FEDERICO, T. OXLAND, J. DURANCEAU, and M. KRAG, Spine 16 (1991) 888

    Article  CAS  Google Scholar 

  12. H. WILKE, P. NEEF, M. CAIMI, T. HOOGLAND and L. CLAES, Spine 24 (1999) 755

    Article  CAS  Google Scholar 

  13. D. LINDSEY, M. KIM, M. HANNIBAL and T. ALAMIN, Spine 30 (2005) 645

    Article  Google Scholar 

  14. S. HADDOCK, Y. OSCAR, M. PRAVEEN, W. ROSENBERG and T. KEAVENY, J. Biomech. 37 (2004) 181

    Article  Google Scholar 

  15. C. A. PATTIN, W. E. CALER and D. R. CARTER, J Biomech 29 (1996) 69

    Article  CAS  Google Scholar 

  16. O. CVIJANOVIC, D. BOBINAC, S. ZORICIC, Z. OSTOJIC, I. MARIC, Z. CRNCEVIC-ORLIC, I. KRISTOFIC and L. OSTOJIC, Spine 29 (2004) 2370

    Article  Google Scholar 

  17. A. NAZARIAN and R. MULLER, J. Biomech. 37 (2004) 55

    Article  Google Scholar 

  18. T. H. HANSSON, T. S. KELLER and M. PANJABI, Spine 11 (1986) 56

    Google Scholar 

  19. V. KOSMOPOULOS and T. S. KELLER, Eur. Spine J. 13 (2004) 617

    Article  CAS  Google Scholar 

  20. S. M. BELKOFF, J. M. MATHIS, L. E. JASPER and H. DERAMOND, Spine 26 (2001) 1537

    Article  CAS  Google Scholar 

  21. S. TOMITA, S. MOLLOY, L. E. JASPER, M. ABE and S. M. BELKOFF, Spine 29 (2004) 1203

    Article  Google Scholar 

  22. R. K. WILCOX, Proc. Inst. Mech. Eng. [H] 218 (2004) 1

    CAS  Google Scholar 

  23. M. ZHU, T. KELLER and D. SPENGLER, J. Biomech. 27 (1994) 57

    Article  CAS  Google Scholar 

  24. D. MCCUBBERY, D. CODY, E. PETERSON, J. KUHN, M. FLYNN and S. GOLDSTEIN, J. Biomech. 28 (1995) 891

    Article  Google Scholar 

  25. L. RAPILLARD, M. CHARLEBOIS and P. ZYSSET, J. Biomech. 39 (2006) 2133

    Article  Google Scholar 

Download references

Acknowledgements

Research supported by the Vermont Space Grant Consortium and NASA EPSCoR. Special thanks to Thomas Steffen for human vertebral μ-CT images, and Jeremy Lemoine and Michael Liebschner for μ-CT scanning of the open-cell foam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony S. Keller.

Additional information

Presented, in part, at the XXth Congress of the International Society of Biomechanics and 29th Annual Meeting of the American Society of Biomechanics, Cleveland, OH, July 31-August 5, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, A.E., Keller, T.S. Mechanical properties of open-cell foam synthetic thoracic vertebrae. J Mater Sci: Mater Med 19, 1317–1323 (2008). https://doi.org/10.1007/s10856-007-3158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3158-7

Keywords

Navigation