Skip to main content

Advertisement

Log in

Effect of ethyl-α-hydroxymethylacrylate on selected properties of copolymers and ACP resin composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

There is an increased interest in the development of bioactive polymeric dental composites and related materials that have potential for mineralized tissue regeneration and preservation. This study explores how the substitution of ethyl α-hydroxymethylacryate (EHMA) for 2-hydroxyethyl methacrylate (HEMA) in photo-activated 2,2-bis[p-(2′-hydroxy-3′-methacryloxypropoxy)phenyl]propane (Bis-GMA) and Bis-GMA/tri(ethylene glycol) dimethacrylate (TEGDMA) resins affected selected physicochemical properties of the polymers and their amorphous calcium phosphate (ACP) composites. Rate of polymerization and the degree of conversion (DC) of polymers {EHMA (E), HEMA (H), Bis-GMA/EHMA (BE), Bis-GMA/HEMA (BH), Bis-GMA/TEGDMA/EHMA (BTE) and Bis-GMA/TEGDMA/HEMA (BTH)} were assessed by photo-differential scanning calorimetry and Fourier-Transform Infrared (FTIR) spectroscopy. ACP/BTE and ACP/BTH composites were evaluated for DC, biaxial flexure strength (BFS), water sorption (WS) and mineral ion release. Mid-FTIR and near-IR measurements revealed the following order of decreasing DC: [E, H polymers (97.0%)] > [BE copolymer (89.9%)] > [BH copolymer (86.2%)] > [BTE, BTH copolymers (85.5%)] > [ACP/BTH composite (82.6%)] > [ACP/BTE composite (79.3%)]. Compared to HEMA, EHMA did not adversely affect the BFS of its copolymers and/or ACP composites. Lower WS of BTE copolymers and composites (28% and 14%, respectively, compared to the BTH copolymers and composites) only marginal reduced the ion release from ACP/BTE composites compared to ACP/BTH composites. More hydrophobic ACP composites with acceptable ion-releasing properties were developed by substituting the less hydrophilic EHMA for HEMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Skrtic, J.M. Antonucci, E.D. Eanes, F.C. Eichmiller, G.E. Schumacher, J. Biomed. Mat. Res. (Appl. Biomater.) 53, 381 (2000)

    Article  CAS  Google Scholar 

  2. D. Skrtic, J.M. Antonucci, E.D. Eanes, J. Res. Natl. Inst. Stands. Technol. 108(3), 167 (2003)

    CAS  Google Scholar 

  3. E.D. Eanes, In: Octacalcium Phosphate, ed. by L.C. Chow, E.D. Eanes (Karger, Basel, 2001), p. 130

  4. D. Skrtic, A.W. Hailer, S. Takagi, J.M. Antonucci, E.D. Eanes, J. Dent. Res. 75(9), 1679 (1996)

    Article  CAS  Google Scholar 

  5. J.N.R O’Donnell, J.M. Antonucci, D. Skrtic, J. Bioact. Comp. Polym. 21(3), 169 (2006)

    Article  CAS  Google Scholar 

  6. S.Y. Lee, W.F. Regnault, J.M. Antonucci, D. Skrtic, J. Biomed. Mater. Res. 80B, 11 (2007)

    Article  CAS  Google Scholar 

  7. D. Skrtic, J.M. Antonucci, J. Biomat. Appl. 21, 375 (2007)

    Article  CAS  Google Scholar 

  8. D. Skrtic, J.M. Antonucci, E.D. Eanes, N. Eidelman, Biomaterials 25, 1141 (2004)

    Article  CAS  Google Scholar 

  9. D. Avci, L.J. Mathias, K. Thigpen, J. Polym. Sci.: Polym. Chem. 34(15), 3191 (1996)

    Article  CAS  Google Scholar 

  10. J.M. Antonucci, J.W. Stansbury, B.O. Fowler, Polym. Preprints 41(2), 1616 (2000)

    CAS  Google Scholar 

  11. J.W. Stansbury, Macromolecules 26, 2981 (1993)

    Article  CAS  Google Scholar 

  12. J.M. Antonucci, E.E. Toth, J. Dent. Res. 23, 791 (1983)

    Google Scholar 

  13. K. Miyazaki, T.J. Horibe, J. Biomed. Mater. Res. 22, 1011 (1988)

    Article  CAS  Google Scholar 

  14. H. Urabe, K. Wakasa, M. Yamaki, J. Mater. Sci. 26, 3185 (1991)

    Article  CAS  Google Scholar 

  15. W.L. Wu, B.M. Fanconi, Polym. Eng. Sci. 23, 704 (1983)

    Article  CAS  Google Scholar 

  16. J.L. Feracane, E.H. Greener, J. Dent. Res. 63, 1093 (1984)

    Google Scholar 

  17. F. Rueggeberg, D.T. Hashinger, C.W. Fairhurst, Dent. Mater. 6, 241 (1990)

    Article  CAS  Google Scholar 

  18. J.W. Stansbury, S.H. Dickens, Dent. Mater. 17, 71 (2001)

    Article  CAS  Google Scholar 

  19. S. Lin-Gibson, F.A. Landis, P.L. Drzal, Biomaterials 27, 1711 (2006)

    Article  CAS  Google Scholar 

  20. ASTM F394-78, Standard test method for biaxial strength (modulus of rupture) of ceramic substrates (re-approved 1996)

  21. G.L. Vogel, L.C. Chow, W.E. Brown, Caries Res. 7, 23 (1983)

    Article  Google Scholar 

  22. J. Murphy, P. Riley, Anal. Chim. Acta 27, 31 (1962)

    Article  CAS  Google Scholar 

  23. J.M. Antonucci, D. Skrtic, J. Bioact. Comp. Polym. 20, 29 (2005)

    Article  CAS  Google Scholar 

  24. J.M. Antonucci, D. Skrtic, in Polymers for Dental and Orthopedic Applications (CRC Press, Boca Raton, 2007), p. 217

  25. M.T. Trujillo, M.S. Jones, J.W. Stansbury, J. Biomed. Mater. Res. A 83A, 734 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Reported work was supported by the National Institute of Dental and Craniofacial Research (NIDCR: Grant DE 13169 to the American Dental Association Foundation (ADAF) and the National Institute of Standards and Technology (NIST)/NIDCR Interagency Agreement XI-DE-7006). It is a part of the dental material research program conducted by NIST in cooperation with ADAF and was also supported by both NIST and ADAF. Generous contribution of Bis-GMA, TEGDMA and HEMA monomers from Esstech, Essington, PA, USA, and CGI 1700 from Ciba Specialty Chemicals Corporation, Tarrytown, NY, USA is gratefully acknowledged. Authors also acknowledge technical assistance of Mr. J.N.R. O’Donnell.

Disclaimer

Certain commercial materials and equipment are identified in this article to specify the experimental procedure. In no instance does such identification imply recommendation or endorsement by NIST or ADAF or that the material and equipment identified is necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drago Skrtic.

Additional information

“Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonucci, J.M., Fowler, B.O., Weir, M.D. et al. Effect of ethyl-α-hydroxymethylacrylate on selected properties of copolymers and ACP resin composites. J Mater Sci: Mater Med 19, 3263–3271 (2008). https://doi.org/10.1007/s10856-008-3463-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3463-9

Keywords

Navigation