Skip to main content

Advertisement

Log in

Preparation of superhydrophilic microrough titanium implant surfaces by alkali treatment

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A new strategy to render intrinsically hydrophobic microrough titanium implant surfaces superhydrophilic is reported, which is based on a rapid treatment with diluted aqueous sodium hydroxide solutions. The physicochemical characterization and protein interaction of the resulting superhydrophilic implant surfaces are presented. The superhydrophilicity of alkali treated microrough titanium substrates was mainly attributed to deprotonation and ion exchange processes in combination with a strong enhancement of wettability due to the roughness of the used substrates. Albeit these minor and mostly reversible chemical changes qualitative and quantitative differences between the protein adsorption on untreated and alkali treated microrough titanium substrates were detected. These differences in protein adsorption might account for the enhanced osseointegrative potential of superhydrophilic alkali treated microrough implant surfaces. The presented alkali treatment protocol represents a new clinically applicable route to superhydrophilic microrough titanium substrates by rendering the implant surface superhydrophilic “in situ of implantation”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.  8

Similar content being viewed by others

References

  1. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Acta Orthop Scand. 1981;52:155–70.

    Article  CAS  PubMed  Google Scholar 

  2. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20:2311–21.

    Article  CAS  PubMed  Google Scholar 

  3. Kasemo B. Biocompatibility of titanium implants: surface science aspects. J Prosthet Dent. 1983;49:832–7.

    Article  CAS  PubMed  Google Scholar 

  4. Albrektsson T, Wennerberg A. Oral implant surfaces: part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont. 2004;17:536–43.

    PubMed  Google Scholar 

  5. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  PubMed  Google Scholar 

  6. Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Impl Res. 1995;6:24–30.

    Article  CAS  Google Scholar 

  7. Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Impl Res. 1998;9:11–9.

    Article  CAS  Google Scholar 

  8. Cooper LF. A role of surface topography in creating and maintaining bone at titanium endosseous implants. J Prosth Dent. 2000;84:522–34.

    Article  CAS  Google Scholar 

  9. Davies JE. Understanding peri-implant endosseous healing. J Dent Edu. 2003;67:932–49.

    Google Scholar 

  10. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG 63). J Biomed Mater Res. 1995;29:389–401.

    Article  CAS  PubMed  Google Scholar 

  11. Lossdörfer B, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, Cochran DL, Boyan BD. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res. 2004;70A:361–9.

    Article  Google Scholar 

  12. Pilliar RM. Implant surface design for development and maintenance of osseointegration. In: Ellingson JE, Lyngstadaas SP, editors. Bio-implant interface. Boca Raton: CRC press; 2003. p. 43–58.

    Google Scholar 

  13. Franchi M, Fini M, Giavaresi G, Ottani V. Peri-implant osteogenesis in health and osteoporosis. Micron. 2005;36:630–44.

    Article  Google Scholar 

  14. Keselowsky BG, Collard DM, Garcìa AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci USA. 2005;102:5953–7.

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res. 2005;74A:49–58.

    Article  CAS  Google Scholar 

  16. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83:529–33.

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson SJ, Broggini N, Wieland M, de Wild M, Rupp F, Geis-Gerstorfer J, Cochran DL, Buser D. Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. J Biomed Mater Res. 2006;78A:291–7.

    Article  CAS  Google Scholar 

  18. Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res. 1996;32:409–17.

    Article  CAS  PubMed  Google Scholar 

  19. Takadama T, Kim HM, Kokubo T, Nakamura T. An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. J Biomed Mater Res. 2001;55:185–93.

    Article  CAS  PubMed  Google Scholar 

  20. Jonášovà L, Müller F, Helebrant A, Strnad J, Greil P. Biomimetic apatite formation on chemically treated titanium. Biomaterials. 2004;25:1187–94.

    Article  PubMed  Google Scholar 

  21. Vroman L. The life of an artificial device in contact with blood: initial events and their effect on its final state. Bull N Y Acad Med. 1988;64:352–7.

    CAS  PubMed  Google Scholar 

  22. Olivares-Navarette R, Raz P, Zhao G, Chen J, Wieland M, Cochran DL, Chaudhri RA, Ornoy A, Boyan BD, Schwartz Z. Integrin α2β1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci USA. 2008;105:15767–72.

    Article  ADS  Google Scholar 

  23. Roach P, Farrar D, Perry CC. Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc. 2005;127:8168–73.

    Article  CAS  PubMed  Google Scholar 

  24. Vroman L, Adams AL, Fischer GC, Munoz PC. Interaction of high molecular weight kininogen in plasma at interfaces. Blood. 1980;55:156–9.

    CAS  PubMed  Google Scholar 

  25. Textor M, Sitting C, Frauchiger V, Tosatti S, Brunette DM. Properties and biological significance of natural oxide films on titanium and its alloys. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springer; 2001. p. 172–224.

    Google Scholar 

  26. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  CAS  PubMed  Google Scholar 

  27. Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res. 2006;76A:323–34.

    Article  CAS  Google Scholar 

  28. Bico J, Thiele U, Quéré D. Wetting of textured surfaces. Colloids Surf A Physicochem Eng Aspect. 2002;206:41–6.

    Article  CAS  Google Scholar 

  29. Ameen AP, Short RD, Johns R, Schwach G. The surface analysis of implant materials. The surface composition of a titanium dental implant material. Clin Oral Impl Res. 1993;4:144–50.

    Article  CAS  Google Scholar 

  30. Massaro C, Rotolo P, De Riccardis F, Milella E, Napoli A, Wieland M, Textor M, Spencer ND, Brunette DM. Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. J mater sci mater med. 2002;13:535–48.

    Article  CAS  PubMed  Google Scholar 

  31. Rupp F, Scheideler L, Rehbein D, Axmann D, Geis-Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials. 2004;25:1429–38.

    Article  CAS  PubMed  Google Scholar 

  32. Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, Ogawa T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials. 2009;30:1015–25.

    Article  CAS  PubMed  Google Scholar 

  33. Baier RE, Meyer AE. Future directions in surface preparation of dental implants. J Dent Ed. 1988;52:788–91.

    CAS  Google Scholar 

  34. Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide films on titanium and adhesion of osteoblasts. Biomaterials. 2003;24:4663–70.

    Article  CAS  PubMed  Google Scholar 

  35. Jennissen HP. Ultra-hydrophilic transition metals as histophilic biomaterials. Macromol Symp. 2005;225:43–69.

    Article  CAS  Google Scholar 

  36. Von Wilmowsky C, Müller L, Lutz R, Lohbauer U, Rupp F, Neukam FW, Nkenke E, Schlegel KA, Müller FA. Osseointegration of chemically modified titanium surfaces: an in vivo study. Adv Eng Mater. 2008;10:B61–6.

    Article  Google Scholar 

  37. Stadlinger B, Lode A, Eckelt U, Range U, Schlottig F, Hefti T, Mai R. Surface-conditioned dental implants: an animal study on bone formation. J Clin Periodont. 2009;36:882–91.

    Article  Google Scholar 

  38. Stadlinger B, Mai R, Lode AT, Eckelt U. Evaluation of surface conditioned dental implants–an animal study. Int J Oral Maxillofac Surg. 2009;38:454.

    Google Scholar 

  39. Whitehouse DJ. Handbook of surface metrology. London: Institute of Physics Publishing; 1994.

    Google Scholar 

  40. Wieland M, Textor M, Spencer ND, Brunette DM. Wavelength-dependent roughness: a quantitative approach to characterizing the topography of rough titanium surfaces. Int J Oral Maxillofac Implants. 2001;16:163–81.

    CAS  PubMed  Google Scholar 

  41. McCafferty E, Wightman JP. Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf Interface Anal. 1998;26:549–64.

    Article  CAS  Google Scholar 

  42. Lim YJ, Oshida Y. Initial contact angle measurements on variously treated dental medical titanium materials. Bio-Med Mater Eng. 2001;11:325–41.

    CAS  Google Scholar 

  43. Connor PA, Dobson KD, McQuillan AJ. Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir. 1999;15:2402–8.

    Article  CAS  Google Scholar 

  44. Schliephake H, Scharnweber D. Chemical and biological functionalization of titanium for dental implants. J Mater Chem. 2008;18:2404–14.

    Article  CAS  Google Scholar 

  45. Boehm HP. Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc. 1971;52:264–75.

    Article  Google Scholar 

  46. Nygren H, Stenberg H, Karlsson C. Kinetics supramolecular structure and equilibrium properties of fibrinogen adsorption at liquid-solid interfaces. J Biomed Mater Res. 1992;26:77–91.

    Article  CAS  PubMed  Google Scholar 

  47. Nygren H. Initial reactions of whole blood with hydrophilic and hydrophobic titanium surfaces. Coll Surf B Bioint. 1996;6:329–33.

    Article  CAS  Google Scholar 

  48. Michael KE, Vernekar VN, Keselowsky BG, Meredith JC, Latour RA, García AJ. Adsorption–induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir. 2003;19:8033–40.

    Article  CAS  Google Scholar 

  49. Scheideler L, Rupp F, Wieland M, Geis-Gerstorfer J. Storage conditions of titanium implants influence molecular and cellular interactions; 83rd general session and exhibition of the international association for dental research; 2006. Poster # 870.

  50. Salzman EW, Linden J, McManama G, Ware JA. Role of fibrinogen in activation of platelets by artificial surfaces. Annals NY Acad Sci. 1987;516:184–95.

    Article  CAS  ADS  Google Scholar 

  51. Tang L, Wu Y, Timmons RB. Fibrinogen adsorption and host tissue responses to plasma functionalized surfaces. J Biomed Mater Res. 1998;42:156–63.

    Article  CAS  PubMed  Google Scholar 

  52. Palmquist A, Jarmar T, Emanuelsson L, Brånemark R, Engqvist H, Thomsen P. Forearm bone-anchored amputation prosthesis: A case study on the osseointegration. Acta Orthop. 2008;79:78–85.

    Article  PubMed  Google Scholar 

  53. Serro AP, Fernandes AC, Saramago BJ. Calcium phosphate deposition on titanium surfaces in the presence of fibronectin. Biomed Mater Res. 2000;49:345–52.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Uwe Pieles and Theo Bühler (FHNW Muttenz, Switzerland) for technical support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Tugulu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tugulu, S., Löwe, K., Scharnweber, D. et al. Preparation of superhydrophilic microrough titanium implant surfaces by alkali treatment. J Mater Sci: Mater Med 21, 2751–2763 (2010). https://doi.org/10.1007/s10856-010-4138-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4138-x

Keywords

Navigation