Skip to main content

Advertisement

Log in

One and four layer acellular bladder matrix for fascial tissue reconstruction

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To determine whether the use of multiple layers of acellular bladder matrix (ABM) is more suitable for the treatment of abdominal wall hernia than a single layered ABM. The feasibility, biocompatibility and mechanical properties of both materials were assessed and compared. Biocompatibility testing was performed on 4 and 1 layered ABM. The matrices were used to repair an abdominal hernia model in 24 rabbits. The animals were followed for up to 3 months. Immediately after euthanasia, the implant site was inspected and samples were retrieved for histology, scanning electron microscopy and biomechanical studies. Both acellular biomaterials demonstrated excellent biocompatibility. At the time of retrieval, there was no evidence of infection. The matrices demonstrated biomechanical properties comparable to native tissue. Three hernias (25%) were found in the single layer ABM group and only 1 hernia (8%) was found in the 4 layer ABM group. Histologically, the matrix structure was intact and the cell density within the matrices decreased with time. The dominant cell type present within the matrices shifted from lymphocytes to fibroblasts over time. Both ABMs maintained adequate strength over time when used for hernia repair, and there was an extremely low incidence of adhesion formation. The single layer ABM showed enhanced cellular integration, while the 4 layer ABM reduced hernia formation. Either of these matrices may be useful as an off-the-shelf biomaterial for patients requiring fascial repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pu LL. Small intestinal submucosa (Surgisis) as a bioactive prosthetic material for repair of abdominal wall fascial defect. Plast Reconstr Surg. 2005;115(7):2127–31.

    Article  CAS  Google Scholar 

  2. Amid PK, Shulman AG, Lichtenstein IL, Hakakha M. Biomaterials for abdominal wall hernia surgery and principles of their applications. Langenbecks Arch Chir. 1994;379(3):168–71.

    Article  CAS  Google Scholar 

  3. Bellon JM, Contreras LA, Bujan J, Carrera-San Martin A. The use of biomaterials in the repair of abdominal wall defects: a comparative study between polypropylene meshes (Marlex) and a new polytetrafluoroethylene prosthesis (Dual Mesh). J Biomater Appl. 1997;12(2):121–35.

    CAS  Google Scholar 

  4. Klinge U, Klosterhalfen B, Muller M, Schumpelick V. Foreign body reaction to meshes used for the repair of abdominal wall hernias. Eur J Surg. 1999;165(7):665–73.

    Article  CAS  Google Scholar 

  5. Majercik S, Tsikitis V, Iannitti DA. Strength of tissue attachment to mesh after ventral hernia repair with synthetic composite mesh in a porcine model. Surg Endosc. 2006;20(11):1671–4.

    Article  CAS  Google Scholar 

  6. Menon NG, Rodriguez ED, Byrnes CK, Girotto JA, Goldberg NH, Silverman RP. Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model. Ann Plast Surg. 2003;50(5):523–7.

    Article  Google Scholar 

  7. Demir U, Mihmanli M, Coskun H, Dilege E, Kalyoncu A, Altinli E, et al. Comparison of prosthetic materials in incisional hernia repair. Surg Today. 2005;35(3):223–7. doi:10.1007/s00595-004-2907-1.

    Article  Google Scholar 

  8. Konstantinovic ML, Pille E, Malinowska M, Verbeken E, De Ridder D, Deprest J. Tensile strength and host response towards different polypropylene implant materials used for augmentation of fascial repair in a rat model. Int Urogynecol J Pelvic Floor Dysfunct. 2007;18(6):619–26. doi:10.1007/s00192-006-0202-y.

    Article  Google Scholar 

  9. Krambeck AE, Dora CD, Sebo TJ, Rohlinger AL, DiMarco DS, Elliott DS. Time-dependent variations in inflammation and scar formation of six different pubovaginal sling materials in the rabbit model. Urology. 2006;67(5):1105–10. doi:10.1016/j.urology.2005.11.036.

    Article  Google Scholar 

  10. Engelsman AF, van der Mei HC, Ploeg RJ, Busscher HJ. The phenomenon of infection with abdominal wall reconstruction. Biomaterials. 2007;28(14):2314–27.

    Article  CAS  Google Scholar 

  11. Kaufman Z, Engelberg M, Zager M. Fecal fistula: a late complication of Marlex mesh repair. Dis Colon Rectum. 1981;24(7):543–4.

    Article  CAS  Google Scholar 

  12. Bauer JJ, Salky BA, Gelernt IM, Kreel I. Repair of large abdominal wall defects with expanded polytetrafluoroethylene (PTFE). Ann Surg. 1987;206(6):765–9.

    Article  CAS  Google Scholar 

  13. Tyrell J, Silberman H, Chandrasoma P, Niland J, Shull J. Absorbable versus permanent mesh in abdominal operations. Surg Gynecol Obstet. 1989;168(3):227–32.

    CAS  Google Scholar 

  14. Voyles CR, Richardson JD, Bland KI, Tobin GR, Flint LM, Polk HC Jr. Emergency abdominal wall reconstruction with polypropylene mesh: short-term benefits versus long-term complications. Ann Surg. 1981;194(2):219–23.

    Article  CAS  Google Scholar 

  15. James NL, Poole-Warren LA, Schindhelm K, Milthorpe BK, Mitchell RM, Mitchell RE, et al. Comparative evaluation of treated bovine pericardium as a xenograft for hernia repair. Biomaterials. 1991;12(9):801–9.

    Article  CAS  Google Scholar 

  16. Rodgers BM, Maher JW, Talbert JL. The use of preserved human dura for closure of abdominal wall and diaphragmatic defects. Ann Surg. 1981;193(5):606–11.

    Article  CAS  Google Scholar 

  17. Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20(3):173–7.

    CAS  Google Scholar 

  18. Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem. 1997;67(4):478–91. doi:10.1002/(SICI)1097-4644(19971215)67:4<478::AID-JCB6>3.0.CO;2-P.

    Google Scholar 

  19. Meinert M, Eriksen GV, Petersen AC, Helmig RB, Laurent C, Uldbjerg N, et al. Proteoglycans and hyaluronan in human fetal membranes. Am J Obstet Gynecol. 2001;184(4):679–85. doi:10.1067/mob.2001.110294.

    Article  CAS  Google Scholar 

  20. Chun SY, Lim GJ, Kwon TG, Kwak EK, Kim BW, Atala A, et al. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials. 2007;28(29):4251–6.

    Article  CAS  Google Scholar 

  21. Ram-Liebig G, Meye A, Hakenberg OW, Haase M, Baretton G, Wirth MP. Induction of proliferation and differentiation of cultured urothelial cells on acellular biomaterials. BJU Int. 2004;94(6):922–7. doi:10.1111/j.1464-410X.2004.05061.x.

    Article  Google Scholar 

  22. Singelyn JM, Christman KL. Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J Cardiovasc Transl Res. 2010;3(5):478–86. doi:10.1007/s12265-010-9202-x.

    Article  Google Scholar 

  23. Zhang Y, He Y, Bharadwaj S, Hammam N, Carnagey K, Myers R, et al. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials. 2009;30(23–24):4021–8. doi:10.1016/j.biomaterials.2009.04.005.

    Article  CAS  Google Scholar 

  24. Eberli D, Susaeta R, Yoo J, Atala A. Tunica repair with acellular bladder matrix maintains corporal tissue function. Int J Impot Res. 2007;19(6):602–9. doi:10.1038/sj.ijir.3901587.

    Article  CAS  Google Scholar 

  25. Pariente JL, Kim BS, Atala A. In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. J Biomed Mater Res. 2001;55(1):33–9.

    Article  CAS  Google Scholar 

  26. Pariente JL, Kim BS, Atala A. In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. J Urol. 2002;167(4):1867–71.

    Article  Google Scholar 

  27. Ansaloni L, Cambrini P, Catena F, Di Saverio S, Gagliardi S, Gazzotti F, et al. Immune response to small intestinal submucosa (surgisis) implant in humans: preliminary observations. J Invest Surg. 2007;20(4):237–41. doi:10.1080/08941930701481296.

    Article  Google Scholar 

  28. Sarikaya A, Record R, Wu CC, Tullius B, Badylak S, Ladisch M. Antimicrobial activity associated with extracellular matrices. Tissue Eng. 2002;8(1):63–71. doi:10.1089/107632702753503063.

    Article  Google Scholar 

  29. Eberli D, Rodriguez S, Atala A, Yoo JJ. In vivo evaluation of acellular human dermis for abdominal wall repair. J Biomed Mater Res A. 2010;93(4):1527–38. doi:10.1002/jbm.a.32636.

    Google Scholar 

  30. Abraham GA, Murray J, Billiar K, Sullivan SJ. Evaluation of the porcine intestinal collagen layer as a biomaterial. J Biomed Mater Res. 2000;51(3):442–52.

    Article  CAS  Google Scholar 

  31. el-Kassaby A, AbouShwareb T, Atala A. Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. J Urol. 2008;179(4):1432–6.

    Article  Google Scholar 

  32. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology. 1999;54(3):407–10.

    Article  CAS  Google Scholar 

  33. Yoo JJ, Meng J, Oberpenning F, Atala A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998;51(2):221–5.

    Article  CAS  Google Scholar 

  34. Kwon TG, Yoo JJ, Atala A. Autologous penile corpora cavernosa replacement using tissue engineering techniques. J Urol. 2002;168(4 Pt 2):1754–8. doi:10.1097/01.ju.0000030103.53181.7d.

    CAS  Google Scholar 

  35. Hiles MC, Badylak SF, Geddes LA, Kokini K, Morff RJ. Porosity of porcine small-intestinal submucosa for use as a vascular graft. J Biomed Mater Res. 1993;27(2):139–44.

    Article  CAS  Google Scholar 

  36. Klinge U, Conze J, Klosterhalfen B, Limberg W, Obolenski B, Ottinger AP, et al. Changes in abdominal wall mechanics after mesh implantation. Experimental changes in mesh stability. Langenbecks Arch Chir. 1996;381(6):323–32.

    Article  CAS  Google Scholar 

  37. Han JG, Ma SZ, Song JK, Wang ZJ. Operative treatment of ventral hernia using prosthetic materials. Hernia. 2007;11(5):419–23.

    Article  CAS  Google Scholar 

  38. Farhat WA, Chen J, Haig J, Antoon R, Litman J, Sherman C, et al. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties. Biomed Mater. 2008;3(2):25015. doi:10.1088/1748-6041/3/2/025015.

    Article  Google Scholar 

  39. Freytes DO, Badylak SF, Webster TJ, Geddes LA, Rundell AE. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials. 2004;25(12):2353–61.

    Article  CAS  Google Scholar 

  40. Freytes DO, Stoner RM, Badylak SF. Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. J Biomed Mater Res B Appl Biomater. 2008;84(2):408–14. doi:10.1002/jbm.b.30885.

    Google Scholar 

  41. Freytes DO, Tullius RS, Badylak SF. Effect of storage upon material properties of lyophilized porcine extracellular matrix derived from the urinary bladder. J Biomed Mater Res B Appl Biomater. 2006;78(2):327–33. doi:10.1002/jbm.b.30491.

    Google Scholar 

  42. Ko R, Kazacos EA, Snyder S, Ernst DM, Lantz GC. Tensile strength comparison of small intestinal submucosa body wall repair. J Surg Res. 2006;135(1):9–17. doi:10.1016/j.jss.2006.02.007.

    Article  Google Scholar 

  43. Soergel TM, Cain MP, Kaefer M, Gitlin J, Casale AJ, Davis MM, et al. Complications of small intestinal submucosa for corporal body grafting for proximal hypospadias. J Urol. 2003;170(4 Pt 2):1577–8; 8–9.

    Google Scholar 

  44. Hafez AT, El-Assmy A, El-Hamid MA. 4 layer versus 1 layer small intestinal submucosa for correction of penile chordee: experimental study in a rabbit model. J Urol. 2004;171(6 Pt 1):2489–91.

    Google Scholar 

  45. Alimoglu O, Akcakaya A, Sahin M, Unlu Y, Ozkan OV, Sanli E, et al. Prevention of adhesion formations following repair of abdominal wall defects with prosthetic materials (an experimental study). Hepatogastroenterology. 2003;50(51):725–8.

    Google Scholar 

  46. Butler CE, Prieto VG. Reduction of adhesions with composite AlloDerm/polypropylene mesh implants for abdominal wall reconstruction. Plast Reconstr Surg. 2004;114(2):464–73.

    Article  Google Scholar 

  47. Dinsmore RC, Calton WC Jr, Harvey SB, Blaney MW. Prevention of adhesions to polypropylene mesh in a traumatized bowel model. J Am Coll Surg. 2000;191(2):131–6.

    Article  CAS  Google Scholar 

  48. Judge TW, Parker DM, Dinsmore RC. Abdominal wall hernia repair: a comparison of sepramesh and parietex composite mesh in a rabbit hernia model. J Am Coll Surg. 2007;204(2):276–81. doi:10.1016/j.jamcollsurg.2006.11.003.

    Article  Google Scholar 

  49. Clarke KM, Lantz GC, Salisbury SK, Badylak SF, Hiles MC, Voytik SL. Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J Surg Res. 1996;60(1):107–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Jennifer Olson, Ph.D. for editorial assistance with this manuscript. This research was supported, in part, by Acell Inc., the Swiss National Research Foundation and Swiss Urological Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberli, D., Atala, A. & Yoo, J.J. One and four layer acellular bladder matrix for fascial tissue reconstruction. J Mater Sci: Mater Med 22, 741–751 (2011). https://doi.org/10.1007/s10856-011-4242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4242-6

Keywords

Navigation