Skip to main content

Advertisement

Log in

Comparison of a SiO2–CaO–ZnO–SrO glass polyalkenoate cement to commercial dental materials: glass structure and physical properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Glass polyalkenoate cements (GPCs) have previously been considered for orthopedic applications. A Zn–GPC (BT 101) was compared to commercial GPCs (Fuji IX and Ketac Molar) which have a setting chemistry analogous to BT 101. Handling properties (working, T w and setting, T s times) for BT 101 were shorter than the commercial GPCs. BT 101 also had a higher setting exotherm (S x —34 °C) than the commercial GPCs (29 °C). The maximum strengths for BT 101, Fuji IX, and Ketac Molar were 75, 238, and 216 MPa (compressive, σ c), and 34, 54, and 62 MPa (biaxial flexural strengths, σ f), respectively. The strengths of BT 101 are more suitable for spinal applications than commercial GPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tyas MJ, Burrow MF. Adhesive restorative materials: a review. Aust Dent J. 2004;49(3):112–21.

    Article  CAS  Google Scholar 

  2. Nicholson JW,Wilson AD. Acid–Base cements — their biomedical and industrial applications. Chemistry of Solid State Materials. Vol. 3. 1993: Cambridge.

  3. Nicholson JW. Adhesive dental materials—a review. Int J Adhes Adhes. 1998;18(4):229–36.

    Article  CAS  Google Scholar 

  4. Smith DC. Development of glass–ionomer cement systems. Biomaterials. 1998;19(6):467–78.

    Article  CAS  Google Scholar 

  5. Cho S, Cheng AC. A review of glass ionomer restorations in the primary dentition. J Can Dent Assoc. 1999;65:491–5.

    CAS  Google Scholar 

  6. DeBruyne MAA, DeMoor RJG. The use of glass ionomer cements in both conventional and surgical endodontics. Int Endod J. 2004;37:91–104.

    Article  CAS  Google Scholar 

  7. Akinmade AO, Nicholson JW. Glass ionomer cements as adhesives. J Mater Sci Mater Med. 1993;4(2):95–101.

    Article  CAS  Google Scholar 

  8. Higgs WA, Lucksanasombool P, Higgs RJED, Swain MV. Comparison of the material properties of PMMA and glass ionomer based cements for use in orthopedic surgery. J Mater Sci Mater Med. 2001;12:453–60.

    Article  CAS  Google Scholar 

  9. Zimehl R, Hannig M. Non metallic restorative materials based on glass ionomer cements — recent trends and developments. Colloids Surf A: Physicochem Eng Asp. 2000;163(1):55–62.

    Article  CAS  Google Scholar 

  10. Reusche E, Pilz P, Oberascher G, Linder B, Egensperger R, Gloeckner K, Trinka E, Iglseder B. Subacute fatal aluminium encephalopathy after reconstructive otoneurosurgery: a case report. Human Pathol. 2001;32(10):1136–9.

    Article  CAS  Google Scholar 

  11. Hatton PV, Hurrell-Gillingham K, Reaney IM, Miller CA, Crawford A. Devitrification of ionomer glass and its effect on the in vitro biocompatibility of glass ionomer cements. Biomaterials. 2003;24:3153–60.

    Article  Google Scholar 

  12. Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S. Neurotoxic effects of aluminium among foundry workers and alzheimers disease. Neurotoxicology. 2002;23:761–74.

    Article  CAS  Google Scholar 

  13. Weber A, May A, von Ilberg C. Bone replacement by ionomer cement in osteoplastic frontal sinus operations. Eur Arch Otorhinolaryngol. 1997;254(1):162–4.

    Article  Google Scholar 

  14. Firling CE, Hill TA, Severson AR. Aluminium toxicity perturbs long bone calcification in the embryonic chick. Arch Toxicol. 1999;73:359–66.

    Article  CAS  Google Scholar 

  15. DeMaeyer EAP, Verbeeck RMH, Vercruysse CWJ. Infrared spectrometric study of acid degradable glasses. J Dent Res. 2002;81(8):552–5.

    Article  CAS  Google Scholar 

  16. Nicholson JW. Chemistry of glass ionomer cements. Biomaterials. 1998;19:485–94.

    Article  CAS  Google Scholar 

  17. Yamaguchi M, Ma ZJ. Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J Miner Metab. 2001;19:38–44.

    Article  Google Scholar 

  18. Yamaguchi M, Ma ZJ. Stimulatory effect of zinc on Deoxyribonucleic acid synthesis in bone growth of newborn rats: enhancement with zinc and insulin like growth factor-I. Calcif Tissue Int. 2001;69:158–63.

    Article  Google Scholar 

  19. Wren AW, Boyd D, Thornton R, Cooney JC, Towler. Antibacterial properties of a tri-sodium citrate modified glass polyalkenoate cement. J Biomed Mater Res B Appl Biomater. 2009;90-B(2):700–9.

    Google Scholar 

  20. Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003;54:177–82.

    Article  CAS  Google Scholar 

  21. Sawai J, Shinobu S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima K. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Biosci Bioeng. 1998;86(5):521–2.

    CAS  Google Scholar 

  22. Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone. 2007;40(5):S5–8.

    Article  CAS  Google Scholar 

  23. Marie PJ. Strontium ranelate; a novel mode of action optimizing bone formation and resorption. Osteoporos Int. 2005;16:S7–10.

    Article  CAS  Google Scholar 

  24. International Organization for Standardization 9917, Dental Water Based Cements (E), in Case Postale 56. 1991: Geneva, Switzerland. p. CH–11211.

  25. Williams JA, Billington RW, Pearson GJ. The effect of the disc support system on biaxial tensile strength of a glass ionomer cement. Dent Mater. 2002;18:376–9.

    Article  CAS  Google Scholar 

  26. Higgs WAJ, Lucksanasombool P, Higgs RJED, Swain MV. A simple method of determining the modulus of orthopaedic bone cement. J Biomed Mater Res (Appl Biomater). 2006;58:188–95.

    Article  Google Scholar 

  27. Boyd D, Towler MR, Watts S, Hill RG, Wren AW, Clarkin OM. The role of Sr2+ on the structure and reactivity of SrO–CaO–ZnO–SiO2 ionomer glasses. J Mater Sci: Mater Med. 2008;19:953–7.

    Article  CAS  Google Scholar 

  28. Stamboulis A, Law RV, Hill RG. Characterization of commercial ionomer glasses using magic angle nuclear magnetic resonance (MAS–NMR). Biomaterials. 2004;25(17):3907–13.

    Article  CAS  Google Scholar 

  29. Van Duinen RNB, Kleverlaan CJ, de Gee AJ, Werner A, Feilzer AJ. Early and long-term wear of ‘Fast-set’ conventional glass–ionomer cements. Dent Mater. 2005;21(8):716–20.

    Article  Google Scholar 

  30. Pascual B, Vazquez B, Gurrachaga M, Goni I, Ginebra MP, Gil FJ, Planell JA, Levenfeld B, Roman JS. New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cements. Biomaterials: Processing, Testing and Manufacturing Technology. 1996;17(5):):509–16.

    CAS  Google Scholar 

  31. Kaplan AE, Williams J, Billington RW, Braden M, Pearson GJ. Effects of variation in particle size on biaxial flexural strength of two conventional glass–ionomer cements. J Oral Rehabil. 2004;31:373–8.

    Article  CAS  Google Scholar 

  32. Serra J, Gonzalez P, Liste S, Chiussi S, Leon B, Perez-amor M, Ylanen HO, Hupa M. Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci: Mater Med. 2002;13:1221–5.

    Article  CAS  Google Scholar 

  33. Wilson AD, Hill RG, Warrens CP, Lewis BG. The influence of Polyacid molecular weight on some properties of glass ionomer cements. J Dent Res. 1989;68(2):89–94.

    Article  CAS  Google Scholar 

  34. Billington RW, Williams JA, Pearson GJ. Ion processes in glass ionomer cements. J Dent. 2006;34:544–55.

    Article  CAS  Google Scholar 

  35. Bergmann G, Graichen F, Rohlmann A, Verdonschot N, van Lenthe GH. Frictional heating of total hip implants. Part 2: finite element study. J Biomech. 2001;34(4):429–35.

    Article  CAS  Google Scholar 

  36. Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone. 1999;25(2):17–21.

    Article  Google Scholar 

  37. Nomoto R, McCabe JF. Effect of mixing methods on the compressive strength of glass ionomer cements. J Dent. 2001;29:205–10.

    Article  CAS  Google Scholar 

  38. Azillah MA, Anstice HM, Pearson GJ. Long term flexural strength of three direct aesthetic restorative materials. J Dent. 1998;26(2):177–82.

    Article  CAS  Google Scholar 

  39. Khouw-Liu VHW, Anstice HM, Pearson GJ. An in vitro investigation of a poly(vinyl phosphonic acid) based cement with four conventional glass ionomer cements. Part 1: flexural and fluoride release. J Dent. 1999;27:351–7.

    Article  CAS  Google Scholar 

  40. Higgs WAJ, Lucksanasombool P, Higgs RJED, Swain MV. Evaluating acrylic and glass–ionomer cement strength using the biaxial flexure test. Biomaterials. 2001;22(12):1583–90.

    Article  CAS  Google Scholar 

  41. Turner CH, Takano Y, Rho J, Tsui TY, Pharr GM. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech. 1999;32:437–41.

    Article  CAS  Google Scholar 

  42. Zioupos P, Currey JD, Hamer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res. 1998;45(2):108–16.

    Article  Google Scholar 

  43. Boyd D, Towler MR, Wren AW, Clarkin OM. Comparison of an experimental bone cement with surgical simplex p, spineplex and cortoss. J Mater Sci Mater Med. 2008;19(4):1745–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Wren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wren, A.W., Coughlan, A., Laffir, F.R. et al. Comparison of a SiO2–CaO–ZnO–SrO glass polyalkenoate cement to commercial dental materials: glass structure and physical properties. J Mater Sci: Mater Med 24, 271–280 (2013). https://doi.org/10.1007/s10856-012-4813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4813-1

Keywords

Navigation