Skip to main content
Log in

Combination of bone marrow concentrate and PGA scaffolds enhance bone marrow stimulation in rabbit articular cartilage repair

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bone marrow stimulation (BMS) has been regarded as a first-line procedure for the repair of articular cartilage. However, cartilage repair using BMS alone has so far not been ideal because cell homing to the required area has not been sufficient. The aim of this study was to investigate the feasibility of autologous bone marrow concentrate transplantation for the repair of large, full-thickness cartilage defects. Thirty rabbits were divided into five groups: untreated (control); BMS only (BMS); BMS followed by PGA implantation (PGA); BMS followed by a combination of PGA and autologous bone marrow concentrate (BMC); and BMS together with a composite of PGA and cultured bone marrow stem cells (BME). The animals were sacrificed at week 8 after operation, and HE staining, toluidine blue staining and immunohistochemistry were used to assess the repair of defects. The results showed that improved repair, including more newly formed cartilage tissue and hyaline cartilage-specific extracellular matrix, was observed in BMC group relative to the first three groups, in addition similar results were found between BMC and BME groups, however it took longer time for in vitro cell expansion in the BME group. This study demonstrates that the transplantation of autologous bone marrow concentrate is an easy, safe and potentially viable method to contribute to articular cartilage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao L, Yang F, Liu G, Yu D, Li H, Fan Q, et al. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials. 2011;32(16):3910–20.

    Article  CAS  Google Scholar 

  2. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10(6):432–63.

    Article  CAS  Google Scholar 

  3. Jin LH, Choi BH, Kim YJ, Park SR, Jin CZ, Min BH. Implantation of bone marrow-derived buffy coat can supplement bone marrow stimulation for articular cartilage repair. Osteoarthritis Cartilage. 2011;19:1440–8.

    Article  CAS  Google Scholar 

  4. Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H. Engineering bone: challenges and obstacles. J Cell Mol Med. 2005;9(1):72–84.

    Article  CAS  Google Scholar 

  5. Bobacz K, Erlacher L, Smolen J, Soleiman A, Graninger WB. Chondrocyte number and proteoglycan synthesis in the aging and osteoarthritic human articular cartilage. Ann Rheum Dis. 2004;63(12):1618–22.

    Article  CAS  Google Scholar 

  6. Zhou G, Liu W, Cui L, Wang X, Liu T, Cao Y. Repair of porcine articular osteochondral defects in non-weight bearing areas with autologous bone marrow stromal cells. Tissue Eng. 2006;12(11):3209–21.

    Article  CAS  Google Scholar 

  7. D’Amour K, Gage FH. New tools for human developmental biology. Nat Biotechnol. 2000;18(4):381–2.

    Article  Google Scholar 

  8. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  Google Scholar 

  9. Hernigou P, Poignard A, Manicom O, Mathieu G, Rouard H. The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br. 2005;87(7):896–902.

    Article  CAS  Google Scholar 

  10. Karatoprak O, Korkmaz MF, Kara AN, Gogus A, Isiklar ZU. Early results of autologous mononuclear bone marrow cell implantation in nontraumatic avascular necrosis of the femoral head. Acta Orthop Traumatol Turc. 2008;42(3):178–83.

    Article  Google Scholar 

  11. Makela J, Ylitalo K, Lehtonen S, Dahlbacka S, Niemela E, Kiviluoma K, et al. Bone marrow-derived mononuclear cell transplantation improves myocardial recovery by enhancing cellular recruitment and differentiation at the infarction site. J Thorac Cardiovasc Surg. 2007;134(3):565–73.

    Article  Google Scholar 

  12. Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials. 2008;29(29):3973–82.

    Article  CAS  Google Scholar 

  13. Im GI, Kim DY, Shin JH, Hyun CW, Cho WH. Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg Br. 2001;83(2):289–94.

    Article  CAS  Google Scholar 

  14. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007;327(3):449–62.

    Article  CAS  Google Scholar 

  15. Qian Y, Lin Z, Chen J, Fan Y, Davey T, Cake M, et al. Natural bone collagen scaffold combined with autologous enriched bone marrow cells for induction of osteogenesis in an ovine spinal fusion model. Tissue Eng Part A. 2009;15(11):3547–58.

    Article  CAS  Google Scholar 

  16. Jiang Y, Chen LK, Zhu DC, Zhang GR, Guo C, Qi YY, et al. The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair. Tissue Eng Part A. 2010;16(5):1621–32.

    Article  CAS  Google Scholar 

  17. Wu SC, Chang JK, Wang CK, Wang GJ, Ho ML. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials. 2010;31(4):631–40.

    Article  Google Scholar 

  18. Ochi M, Adachi N, Nobuto H, Yanada S, Ito Y, Agung M. Articular cartilage repair using tissue engineering technique–novel approach with minimally invasive procedure. Artif Organs. 2004;28(1):28–32.

    Article  Google Scholar 

  19. Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, et al. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res. 2011;29(8):1178–84.

    Article  Google Scholar 

  20. Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res. 2002;405:14–23.

    Article  Google Scholar 

  21. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92(10):1927–37.

    Article  Google Scholar 

  22. Suzuki Y, Kim KJ, Kotake S, Itoh T. Stromal cell activity in bone marrow from the tibia and iliac crest of patients with rheumatoid arthritis. J Bone Miner Metab. 2001;19(1):56–60.

    Article  CAS  Google Scholar 

  23. Vilquin JT, Rosset P. Mesenchymal stem cells in bone and cartilage repair: current status. Regen Med. 2006;1(4):589–604.

    Article  CAS  Google Scholar 

  24. Krampera M, Pizzolo G, Aprili G, Franchini M. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone. 2006;39(4):678–83.

    Article  CAS  Google Scholar 

  25. Muschler GF, Matsukura Y, Nitto H, Boehm CA, Valdevit AD, Kambic HE, et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res. 2005;432:242–51.

    Article  Google Scholar 

  26. Muschler GF, Nitto H, Matsukura Y, Boehm C, Valdevit A, Kambic H, et al. Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clin Orthop Relat Res. 2003;407:102–18.

    Article  Google Scholar 

  27. Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009;69(13):5331–9.

    Article  CAS  Google Scholar 

  28. Matsumoto T, Okabe T, Ikawa T, Iida T, Yasuda H, Nakamura H, et al. Articular cartilage repair with autologous bone marrow mesenchymal cells. J Cell Physiol. 2010;225(2):291–5.

    Article  CAS  Google Scholar 

  29. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360(9331):427–35.

    Article  Google Scholar 

  30. Ishimoto Y, Hattori K, Ohgushi H. Articular cartilage regeneration using scaffold. Clin Calcium. 2008;18(12):1775–80.

    CAS  Google Scholar 

  31. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278(1):1–23.

    Article  CAS  Google Scholar 

  32. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100073120090) and the Research funds for combination of engineering (science) with medicine of Shanghai Jiao Tong University (Grant No. YG2011MS28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenkai Wu.

Additional information

Shouguo Wang—Co-first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Wang, S., Tian, J. et al. Combination of bone marrow concentrate and PGA scaffolds enhance bone marrow stimulation in rabbit articular cartilage repair. J Mater Sci: Mater Med 24, 793–801 (2013). https://doi.org/10.1007/s10856-012-4841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4841-x

Keywords

Navigation